Nuprl Lemma : fan-implies-PFan
Fan 
⇒ PFan{i:l}()
Proof
Definitions occuring in Statement : 
PFan: PFan{i:l}()
, 
fan: Fan
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
less_than': less_than'(a;b)
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
guard: {T}
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
fan: Fan
, 
all: ∀x:A. B[x]
, 
PFan: PFan{i:l}()
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
cand: A c∧ B
, 
squash: ↓T
, 
true: True
, 
less_than: a < b
, 
nat_plus: ℕ+
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
Lemmas referenced : 
fan_wf, 
decidable_wf, 
iseg_wf, 
false_wf, 
int_seg_subtype_nat, 
subtype_rel_function, 
exists_wf, 
pi2_wf, 
upto_wf, 
pi1_wf, 
map_wf, 
nat_wf, 
decidable__equal_bool, 
decidable__not, 
decidable__implies, 
decidable__all_int_seg, 
decidable__and2, 
subtype_rel_self, 
unshuffle_wf, 
list_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
int_seg_properties, 
select_wf, 
equal_wf, 
not_wf, 
int_seg_wf, 
all_wf, 
bool_wf, 
length_wf, 
le_wf, 
decidable__exists_int_seg, 
select-upto, 
select-map, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
bool_cases, 
map-length, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
btrue_wf, 
subtype_rel_list, 
top_wf, 
length_upto, 
lelt_wf, 
assert_wf, 
bnot_wf, 
imax_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
imax_ub, 
iseg-map, 
int_seg_subtype, 
le_weakening, 
upto_iseg, 
map_length_nat, 
iff_weakening_equal, 
unshuffle-map, 
true_wf, 
squash_wf, 
mul_bounds_1a, 
length-shuffle, 
shuffle_wf, 
istype-false, 
istype-int, 
istype-void, 
istype-nat, 
length-map, 
list_extensionality, 
select-shuffle, 
zero-add, 
mul-commutes, 
neg_assert_of_eq_int, 
multiply-is-int-iff, 
add-is-int-iff, 
assert_of_eq_int, 
eq_int_wf, 
rem_invariant, 
nequal_wf, 
equal-wf-base, 
int_subtype_base, 
div_rem_sum, 
div-cancel3, 
div-cancel2, 
rem_bounds_1, 
list_subtype_base, 
product_subtype_base, 
divide_wf, 
unshuffle-map'
Rules used in proof : 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
cumulativity, 
equalitySymmetry, 
equalityTransitivity, 
dependent_set_memberEquality, 
universeEquality, 
instantiate, 
functionExtensionality, 
applyEquality, 
addEquality, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
productElimination, 
independent_isectElimination, 
functionEquality, 
sqequalRule, 
hypothesisEquality, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
multiplyEquality, 
isectElimination, 
productEquality, 
lambdaEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
independent_pairEquality, 
impliesFunctionality, 
applyLambdaEquality, 
equalityElimination, 
promote_hyp, 
inlFormation, 
inrFormation, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
Error :lambdaEquality_alt, 
closedConclusion, 
Error :lambdaFormation_alt, 
Error :dependent_pairFormation_alt, 
Error :isect_memberEquality_alt, 
Error :universeIsType, 
Error :inhabitedIsType, 
hyp_replacement, 
divideEquality, 
baseApply, 
pointwiseFunctionality, 
remainderEquality, 
addLevel
Latex:
Fan  {}\mRightarrow{}  PFan\{i:l\}()
Date html generated:
2019_06_20-PM-02_48_40
Last ObjectModification:
2019_01_11-PM-00_50_37
Theory : fan-theorem
Home
Index