Nuprl Lemma : mon_nat_op_mul

[g:IMonoid]. ∀[m,n:ℕ]. ∀[e:|g|].  ((n ⋅ (m ⋅ e)) ((n m) ⋅ e) ∈ |g|)


Proof




Definitions occuring in Statement :  mon_nat_op: n ⋅ e imon: IMonoid grp_car: |g| nat: uall: [x:A]. B[x] multiply: m equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: squash: T imon: IMonoid le: A ≤ B less_than': less_than'(a;b) true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q nat_plus: + decidable: Dec(P) or: P ∨ Q infix_ap: y subtract: m
Lemmas referenced :  istype-nat imon_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than zero-mul equal_wf istype-universe grp_car_wf mon_nat_op_wf istype-false istype-le mon_nat_op_zero iff_weakening_equal subtract-1-ge-0 squash_wf true_wf mon_nat_op_unroll mul_bounds_1a decidable__le intformnot_wf int_formula_prop_not_lemma subtype_rel_self grp_op_wf mon_nat_op_add subtract_wf itermSubtract_wf int_term_value_subtract_lemma mul-distributes-right add-associates mul-commutes add-swap add-commutes add-mul-special zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution isect_memberEquality_alt isectElimination thin hypothesisEquality axiomEquality hypothesis isectIsTypeImplies inhabitedIsType extract_by_obid universeIsType setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination voidElimination independent_pairFormation functionIsTypeImplies applyEquality imageElimination because_Cache instantiate dependent_set_memberEquality_alt imageMemberEquality baseClosed equalityTransitivity equalitySymmetry productElimination universeEquality multiplyEquality unionElimination minusEquality

Latex:
\mforall{}[g:IMonoid].  \mforall{}[m,n:\mBbbN{}].  \mforall{}[e:|g|].    ((n  \mcdot{}  (m  \mcdot{}  e))  =  ((n  *  m)  \mcdot{}  e))



Date html generated: 2019_10_15-AM-10_33_04
Last ObjectModification: 2018_10_19-AM-08_57_20

Theory : groups_1


Home Index