Nuprl Lemma : mon_nat_op_mul
∀[g:IMonoid]. ∀[m,n:ℕ]. ∀[e:|g|].  ((n ⋅ (m ⋅ e)) = ((n * m) ⋅ e) ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_nat_op: n ⋅ e
, 
imon: IMonoid
, 
grp_car: |g|
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
multiply: n * m
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
squash: ↓T
, 
imon: IMonoid
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
infix_ap: x f y
, 
subtract: n - m
Lemmas referenced : 
istype-nat, 
imon_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
zero-mul, 
equal_wf, 
istype-universe, 
grp_car_wf, 
mon_nat_op_wf, 
istype-false, 
istype-le, 
mon_nat_op_zero, 
iff_weakening_equal, 
subtract-1-ge-0, 
squash_wf, 
true_wf, 
mon_nat_op_unroll, 
mul_bounds_1a, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
subtype_rel_self, 
grp_op_wf, 
mon_nat_op_add, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
mul-distributes-right, 
add-associates, 
mul-commutes, 
add-swap, 
add-commutes, 
add-mul-special, 
zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality_alt, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
isectIsTypeImplies, 
inhabitedIsType, 
extract_by_obid, 
universeIsType, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
voidElimination, 
independent_pairFormation, 
functionIsTypeImplies, 
applyEquality, 
imageElimination, 
because_Cache, 
instantiate, 
dependent_set_memberEquality_alt, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
universeEquality, 
multiplyEquality, 
unionElimination, 
minusEquality
Latex:
\mforall{}[g:IMonoid].  \mforall{}[m,n:\mBbbN{}].  \mforall{}[e:|g|].    ((n  \mcdot{}  (m  \mcdot{}  e))  =  ((n  *  m)  \mcdot{}  e))
Date html generated:
2019_10_15-AM-10_33_04
Last ObjectModification:
2018_10_19-AM-08_57_20
Theory : groups_1
Home
Index