Nuprl Lemma : cons_pr_in_oalist
∀a:LOSet. ∀b:AbDMon. ∀ws:|oal(a;b)|. ∀x:|a|. ∀y:|b|.
((↑before(x;map(λx.(fst(x));ws)))
⇒ (¬(y = e ∈ |b|))
⇒ ([<x, y> / ws] ∈ |oal(a;b)|))
Proof
Definitions occuring in Statement :
oalist: oal(a;b)
,
before: before(u;ps)
,
map: map(f;as)
,
cons: [a / b]
,
assert: ↑b
,
pi1: fst(t)
,
all: ∀x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
member: t ∈ T
,
lambda: λx.A[x]
,
pair: <a, b>
,
equal: s = t ∈ T
,
abdmonoid: AbDMon
,
grp_id: e
,
grp_car: |g|
,
loset: LOSet
,
set_car: |p|
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
abdmonoid: AbDMon
,
dmon: DMon
,
mon: Mon
,
prop: ℙ
,
loset: LOSet
,
poset: POSet{i}
,
qoset: QOSet
,
subtype_rel: A ⊆r B
,
dset: DSet
,
set_prod: s × t
,
mk_dset: mk_dset(T, eq)
,
set_car: |p|
,
pi1: fst(t)
,
oalist: oal(a;b)
,
dset_set: dset_set,
dset_list: s List
,
dset_of_mon: g↓set
,
and: P ∧ Q
,
pi2: snd(t)
,
top: Top
,
set_eq: =b
,
cand: A c∧ B
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
uimplies: b supposing a
,
not: ¬A
,
or: P ∨ Q
,
false: False
,
infix_ap: x f y
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
not_wf,
equal_wf,
grp_car_wf,
grp_id_wf,
assert_wf,
before_wf,
map_wf,
set_car_wf,
set_prod_wf,
dset_of_mon_wf,
oalist_wf,
abdmonoid_wf,
loset_wf,
sd_ordered_wf,
mem_wf,
dset_of_mon_wf0,
cons_wf,
map_cons_lemma,
istype-void,
sd_ordered_cons_lemma,
mem_cons_lemma,
assert_of_band,
iff_transitivity,
bor_wf,
infix_ap_wf,
bool_wf,
grp_eq_wf,
or_wf,
iff_weakening_uiff,
assert_of_bor,
assert_of_mon_eq
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
cut,
sqequalHypSubstitution,
hypothesis,
universeIsType,
introduction,
extract_by_obid,
isectElimination,
thin,
setElimination,
rename,
hypothesisEquality,
because_Cache,
dependent_functionElimination,
applyEquality,
sqequalRule,
lambdaEquality_alt,
productElimination,
inhabitedIsType,
equalityTransitivity,
equalitySymmetry,
dependent_set_memberEquality_alt,
productIsType,
productEquality,
independent_pairEquality,
isect_memberEquality_alt,
voidElimination,
independent_isectElimination,
independent_pairFormation,
unionElimination,
independent_functionElimination,
unionIsType,
equalityIsType1,
inlFormation_alt,
inrFormation_alt
Latex:
\mforall{}a:LOSet. \mforall{}b:AbDMon. \mforall{}ws:|oal(a;b)|. \mforall{}x:|a|. \mforall{}y:|b|.
((\muparrow{}before(x;map(\mlambda{}x.(fst(x));ws))) {}\mRightarrow{} (\mneg{}(y = e)) {}\mRightarrow{} ([<x, y> / ws] \mmember{} |oal(a;b)|))
Date html generated:
2019_10_16-PM-01_07_10
Last ObjectModification:
2018_10_08-PM-06_42_08
Theory : polynom_2
Home
Index