Nuprl Lemma : cons_pr_in_oalist

a:LOSet. ∀b:AbDMon. ∀ws:|oal(a;b)|. ∀x:|a|. ∀y:|b|.
  ((↑before(x;map(λx.(fst(x));ws)))  (y e ∈ |b|))  ([<x, y> ws] ∈ |oal(a;b)|))


Proof




Definitions occuring in Statement :  oalist: oal(a;b) before: before(u;ps) map: map(f;as) cons: [a b] assert: b pi1: fst(t) all: x:A. B[x] not: ¬A implies:  Q member: t ∈ T lambda: λx.A[x] pair: <a, b> equal: t ∈ T abdmonoid: AbDMon grp_id: e grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] abdmonoid: AbDMon dmon: DMon mon: Mon prop: loset: LOSet poset: POSet{i} qoset: QOSet subtype_rel: A ⊆B dset: DSet set_prod: s × t mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) oalist: oal(a;b) dset_set: dset_set dset_list: List dset_of_mon: g↓set and: P ∧ Q pi2: snd(t) top: Top set_eq: =b cand: c∧ B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a not: ¬A or: P ∨ Q false: False infix_ap: y iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  not_wf equal_wf grp_car_wf grp_id_wf assert_wf before_wf map_wf set_car_wf set_prod_wf dset_of_mon_wf oalist_wf abdmonoid_wf loset_wf sd_ordered_wf mem_wf dset_of_mon_wf0 cons_wf map_cons_lemma istype-void sd_ordered_cons_lemma mem_cons_lemma assert_of_band iff_transitivity bor_wf infix_ap_wf bool_wf grp_eq_wf or_wf iff_weakening_uiff assert_of_bor assert_of_mon_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution hypothesis universeIsType introduction extract_by_obid isectElimination thin setElimination rename hypothesisEquality because_Cache dependent_functionElimination applyEquality sqequalRule lambdaEquality_alt productElimination inhabitedIsType equalityTransitivity equalitySymmetry dependent_set_memberEquality_alt productIsType productEquality independent_pairEquality isect_memberEquality_alt voidElimination independent_isectElimination independent_pairFormation unionElimination independent_functionElimination unionIsType equalityIsType1 inlFormation_alt inrFormation_alt

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ws:|oal(a;b)|.  \mforall{}x:|a|.  \mforall{}y:|b|.
    ((\muparrow{}before(x;map(\mlambda{}x.(fst(x));ws)))  {}\mRightarrow{}  (\mneg{}(y  =  e))  {}\mRightarrow{}  ([<x,  y>  /  ws]  \mmember{}  |oal(a;b)|))



Date html generated: 2019_10_16-PM-01_07_10
Last ObjectModification: 2018_10_08-PM-06_42_08

Theory : polynom_2


Home Index