Nuprl Lemma : es-interface-union-right

[Info,A:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(Top)].
  (right(Y+X) X ∈ EClass(A)) supposing (X ∩ and Singlevalued(X))


Proof




Definitions occuring in Statement :  es-interface-disjoint: X ∩ 0 es-interface-union: X+Y es-interface-right: right(X) sv-class: Singlevalued(X) eclass: EClass(A[eo; e]) uimplies: supposing a uall: [x:A]. B[x] top: Top universe: Type equal: t ∈ T
Lemmas :  in-eclass_wf bool_wf eqtt_to_assert bag_size_single_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bag_size_empty_lemma es-E_wf event-ordering+_subtype es-interface-disjoint_wf top_wf sv-class_wf event-ordering+_wf eclass_wf filter_cons_lemma filter_nil_lemma map_nil_lemma sv-class-iff bag_wf empty-bag_wf iff_weakening_equal assert_of_eq_int neg_assert_of_eq_int bag-size_wf nat_wf bag-size-one bag-only_wf2 single-valued-bag-if-le1 le_weakening decidable__lt false_wf le_antisymmetry_iff add_functionality_wrt_le add-zero le-add-cancel reduce_hd_cons_lemma map_cons_lemma cons_wf nil_wf list-subtype-bag ite_rw_false eq_int_wf

Latex:
\mforall{}[Info,A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(Top)].
    (right(Y+X)  =  X)  supposing  (X  \mcap{}  Y  =  0  and  Singlevalued(X))



Date html generated: 2015_07_21-PM-04_20_05
Last ObjectModification: 2015_02_04-PM-06_04_56

Home Index