Nuprl Lemma : es-interface-union-right
∀[Info,A:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(Top)].
  (right(Y+X) = X ∈ EClass(A)) supposing (X ∩ Y = 0 and Singlevalued(X))
Proof
Definitions occuring in Statement : 
es-interface-disjoint: X ∩ Y = 0
, 
es-interface-union: X+Y
, 
es-interface-right: right(X)
, 
sv-class: Singlevalued(X)
, 
eclass: EClass(A[eo; e])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
in-eclass_wf, 
bool_wf, 
eqtt_to_assert, 
bag_size_single_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bag_size_empty_lemma, 
es-E_wf, 
event-ordering+_subtype, 
es-interface-disjoint_wf, 
top_wf, 
sv-class_wf, 
event-ordering+_wf, 
eclass_wf, 
filter_cons_lemma, 
filter_nil_lemma, 
map_nil_lemma, 
sv-class-iff, 
bag_wf, 
empty-bag_wf, 
iff_weakening_equal, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
bag-size_wf, 
nat_wf, 
bag-size-one, 
bag-only_wf2, 
single-valued-bag-if-le1, 
le_weakening, 
decidable__lt, 
false_wf, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
reduce_hd_cons_lemma, 
map_cons_lemma, 
cons_wf, 
nil_wf, 
list-subtype-bag, 
ite_rw_false, 
eq_int_wf
Latex:
\mforall{}[Info,A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(Top)].
    (right(Y+X)  =  X)  supposing  (X  \mcap{}  Y  =  0  and  Singlevalued(X))
Date html generated:
2015_07_21-PM-04_20_05
Last ObjectModification:
2015_02_04-PM-06_04_56
Home
Index