Nuprl Lemma : es-interface-union-right
∀[Info,A:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(Top)].
(right(Y+X) = X ∈ EClass(A)) supposing (X ∩ Y = 0 and Singlevalued(X))
Proof
Definitions occuring in Statement :
es-interface-disjoint: X ∩ Y = 0
,
es-interface-union: X+Y
,
es-interface-right: right(X)
,
sv-class: Singlevalued(X)
,
eclass: EClass(A[eo; e])
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
top: Top
,
universe: Type
,
equal: s = t ∈ T
Lemmas :
in-eclass_wf,
bool_wf,
eqtt_to_assert,
bag_size_single_lemma,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
bag_size_empty_lemma,
es-E_wf,
event-ordering+_subtype,
es-interface-disjoint_wf,
top_wf,
sv-class_wf,
event-ordering+_wf,
eclass_wf,
filter_cons_lemma,
filter_nil_lemma,
map_nil_lemma,
sv-class-iff,
bag_wf,
empty-bag_wf,
iff_weakening_equal,
assert_of_eq_int,
neg_assert_of_eq_int,
bag-size_wf,
nat_wf,
bag-size-one,
bag-only_wf2,
single-valued-bag-if-le1,
le_weakening,
decidable__lt,
false_wf,
le_antisymmetry_iff,
add_functionality_wrt_le,
add-zero,
le-add-cancel,
reduce_hd_cons_lemma,
map_cons_lemma,
cons_wf,
nil_wf,
list-subtype-bag,
ite_rw_false,
eq_int_wf
Latex:
\mforall{}[Info,A:Type]. \mforall{}[X:EClass(A)]. \mforall{}[Y:EClass(Top)].
(right(Y+X) = X) supposing (X \mcap{} Y = 0 and Singlevalued(X))
Date html generated:
2015_07_21-PM-04_20_05
Last ObjectModification:
2015_02_04-PM-06_04_56
Home
Index