Nuprl Lemma : reduce-bool-bfalse
∀T:Type. ∀f:T ─→ 𝔹 ─→ 𝔹. ∀L:T List.  (reduce(λx,b. (b ∧b f[x;b]);ff;L) ~ ff)
Proof
Definitions occuring in Statement : 
reduce: reduce(f;k;as)
, 
list: T List
, 
band: p ∧b q
, 
bfalse: ff
, 
bool: 𝔹
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
lambda: λx.A[x]
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
sqequal: s ~ t
Lemmas : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
equal-wf-T-base, 
colength_wf_list, 
list-cases, 
reduce_nil_lemma, 
product_subtype_list, 
spread_cons_lemma, 
sq_stable__le, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
nat_wf, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-commutes, 
le_wf, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
minus-minus, 
add-swap, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
reduce_cons_lemma, 
bool_wf, 
bool_subtype_base, 
band_commutes, 
iff_weakening_equal, 
band_ff_simp, 
list_wf
\mforall{}T:Type.  \mforall{}f:T  {}\mrightarrow{}  \mBbbB{}  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L:T  List.    (reduce(\mlambda{}x,b.  (b  \mwedge{}\msubb{}  f[x;b]);ff;L)  \msim{}  ff)
Date html generated:
2015_07_17-AM-08_36_12
Last ObjectModification:
2015_02_04-AM-07_07_25
Home
Index