Nuprl Lemma : name-comp-flip
∀I:Cname List. ∀x:nameset(I). ∀K:Cname List. ∀f:name-morph(I;K). ∀f1:name-morph(K;[]).
  (f o flip(f1;f x)) = flip((f o f1);x) ∈ name-morph(I;[]) supposing ↑isname(f x)
Proof
Definitions occuring in Statement : 
name-morph-flip: flip(f;y), 
name-comp: (f o g), 
name-morph: name-morph(I;J), 
isname: isname(z), 
nameset: nameset(L), 
coordinate_name: Cname, 
nil: [], 
list: T List, 
assert: ↑b, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
apply: f a, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
name-morph: name-morph(I;J), 
uiff: uiff(P;Q), 
and: P ∧ Q, 
name-comp: (f o g), 
name-morph-flip: flip(f;y), 
compose: f o g, 
uext: uext(g), 
nameset: nameset(L), 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
coordinate_name: Cname, 
int_upper: {i...}, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
respects-equality: respects-equality(S;T), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced : 
name-morph-ext, 
nil_wf, 
coordinate_name_wf, 
name-comp_wf, 
name-morph-flip_wf, 
assert-isname, 
istype-assert, 
isname_wf, 
name-morph_wf, 
nameset_wf, 
list_wf, 
eq-cname_wf, 
eqtt_to_assert, 
assert-eq-cname, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
equal_wf, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
isname-name, 
member_wf, 
respects-equality-set-trivial2, 
l_member_wf, 
extd-nameset-nil, 
subtract_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
decidable__lt, 
istype-le, 
istype-less_than, 
nsub2_subtype_extd-nameset, 
name-morph-one-one, 
not-assert-isname
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
inhabitedIsType, 
sqequalRule, 
unionElimination, 
equalityElimination, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
intEquality, 
lambdaEquality_alt, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_pairFormation, 
approximateComputation, 
int_eqEquality, 
Error :memTop, 
productIsType
Latex:
\mforall{}I:Cname  List.  \mforall{}x:nameset(I).  \mforall{}K:Cname  List.  \mforall{}f:name-morph(I;K).  \mforall{}f1:name-morph(K;[]).
    (f  o  flip(f1;f  x))  =  flip((f  o  f1);x)  supposing  \muparrow{}isname(f  x)
Date html generated:
2020_05_21-AM-10_50_07
Last ObjectModification:
2019_12_08-PM-07_06_09
Theory : cubical!sets
Home
Index