Nuprl Lemma : name-comp-flip

I:Cname List. ∀x:nameset(I). ∀K:Cname List. ∀f:name-morph(I;K). ∀f1:name-morph(K;[]).
  (f flip(f1;f x)) flip((f f1);x) ∈ name-morph(I;[]) supposing ↑isname(f x)


Proof




Definitions occuring in Statement :  name-morph-flip: flip(f;y) name-comp: (f g) name-morph: name-morph(I;J) isname: isname(z) nameset: nameset(L) coordinate_name: Cname nil: [] list: List assert: b uimplies: supposing a all: x:A. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T name-morph: name-morph(I;J) uiff: uiff(P;Q) and: P ∧ Q name-comp: (f g) name-morph-flip: flip(f;y) compose: g uext: uext(g) nameset: nameset(L) implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q coordinate_name: Cname int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop: respects-equality: respects-equality(S;T) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  name-morph-ext nil_wf coordinate_name_wf name-comp_wf name-morph-flip_wf assert-isname istype-assert isname_wf name-morph_wf nameset_wf list_wf eq-cname_wf eqtt_to_assert assert-eq-cname eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal_wf set_subtype_base le_wf istype-int int_subtype_base isname-name member_wf respects-equality-set-trivial2 l_member_wf extd-nameset-nil subtract_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_eq_lemma int_formula_prop_wf decidable__lt istype-le istype-less_than nsub2_subtype_extd-nameset name-morph-one-one not-assert-isname
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache applyEquality setElimination rename productElimination independent_isectElimination equalityTransitivity equalitySymmetry universeIsType inhabitedIsType sqequalRule unionElimination equalityElimination dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination intEquality lambdaEquality_alt natural_numberEquality dependent_set_memberEquality_alt applyLambdaEquality imageElimination imageMemberEquality baseClosed independent_pairFormation approximateComputation int_eqEquality Error :memTop,  productIsType

Latex:
\mforall{}I:Cname  List.  \mforall{}x:nameset(I).  \mforall{}K:Cname  List.  \mforall{}f:name-morph(I;K).  \mforall{}f1:name-morph(K;[]).
    (f  o  flip(f1;f  x))  =  flip((f  o  f1);x)  supposing  \muparrow{}isname(f  x)



Date html generated: 2020_05_21-AM-10_50_07
Last ObjectModification: 2019_12_08-PM-07_06_09

Theory : cubical!sets


Home Index