Nuprl Lemma : nerve_box_edge_same

[C:SmallCategory]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
[box:open_box(cubical-nerve(C);I;J;x;i)]. ∀[y:nameset(I)]. ∀[c:{c:name-morph(I;[])| (c y) 0 ∈ ℕ2} ].
  ∀f:I-face(cubical-nerve(C);I)
    (arrow(cube(f)) flip(c;y) x.Ax))
    nerve_box_edge(box;c;y)
    ∈ (cat-arrow(C) nerve_box_label(box;c) nerve_box_label(box;flip(c;y))) 
    supposing (f ∈ box) ∧ (direction(f) (c dimension(f)) ∈ ℕ2) ∧ (direction(f) (flip(c;y) dimension(f)) ∈ ℕ2) 
  supposing (∃j1∈J. (∃j2∈J. ¬(j1 j2 ∈ Cname))) ∨ (((c x) i ∈ ℕ2) ∧ (¬↑null(J)))


Proof




Definitions occuring in Statement :  nerve_box_edge: nerve_box_edge(box;c;y) nerve_box_label: nerve_box_label(box;L) cubical-nerve: cubical-nerve(X) open_box: open_box(X;I;J;x;i) face-cube: cube(f) face-direction: direction(f) face-dimension: dimension(f) I-face: I-face(X;I) name-morph-flip: flip(f;y) name-morph: name-morph(I;J) nameset: nameset(L) coordinate_name: Cname functor-arrow: arrow(F) cat-arrow: cat-arrow(C) small-category: SmallCategory l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) null: null(as) nil: [] list: List int_seg: {i..j-} assert: b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A or: P ∨ Q and: P ∧ Q set: {x:A| B[x]}  apply: a lambda: λx.A[x] natural_number: $n equal: t ∈ T axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a or: P ∨ Q prop: and: P ∧ Q name-morph: name-morph(I;J) subtype_rel: A ⊆B top: Top guard: {T} so_lambda: λ2x.t[x] nameset: nameset(L) so_apply: x[s] all: x:A. B[x] open_box: open_box(X;I;J;x;i) l_exists: (∃x∈L. P[x]) exists: x:A. B[x] int_seg: {i..j-} lelt: i ≤ j < k implies:  Q sq_stable: SqStable(P) squash: T coordinate_name: Cname int_upper: {i...} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A less_than: a < b
Lemmas referenced :  nerve_box_edge_same1 equal_wf int_seg_wf not_wf assert_wf null_wf3 subtype_rel_list nameset_wf top_wf l_exists_wf coordinate_name_wf l_member_wf I-face_wf cubical-nerve_wf face-direction_wf face-dimension_wf name-morph-flip_wf name-morph_wf nil_wf or_wf set_wf equal-wf-T-base extd-nameset-nil open_box_wf list_wf small-category_wf decidable__equal-coordinate_name select_wf int_seg_properties length_wf sq_stable__l_member sq_stable__le decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma intformeq_wf int_formula_prop_eq_lemma le_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination unionElimination inlFormation productEquality natural_numberEquality applyEquality setElimination rename because_Cache sqequalRule lambdaEquality isect_memberEquality voidElimination voidEquality inrFormation setEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry lambdaFormation baseClosed productElimination independent_functionElimination imageMemberEquality imageElimination dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll applyLambdaEquality dependent_set_memberEquality

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[box:open\_box(cubical-nerve(C);I;J;x;i)].  \mforall{}[y:nameset(I)].  \mforall{}[c:\{c:name-morph(I;[])|  (c  y)  =  0\}  ].
    \mforall{}f:I-face(cubical-nerve(C);I)
        (arrow(cube(f))  c  flip(c;y)  (\mlambda{}x.Ax))  =  nerve\_box\_edge(box;c;y) 
        supposing  (f  \mmember{}  box)
        \mwedge{}  (direction(f)  =  (c  dimension(f)))
        \mwedge{}  (direction(f)  =  (flip(c;y)  dimension(f))) 
    supposing  (\mexists{}j1\mmember{}J.  (\mexists{}j2\mmember{}J.  \mneg{}(j1  =  j2)))  \mvee{}  (((c  x)  =  i)  \mwedge{}  (\mneg{}\muparrow{}null(J)))



Date html generated: 2017_10_05-PM-03_38_29
Last ObjectModification: 2017_07_28-AM-11_25_52

Theory : cubical!sets


Home Index