Nuprl Lemma : nerve_box_edge_same
∀[C:SmallCategory]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
∀[box:open_box(cubical-nerve(C);I;J;x;i)]. ∀[y:nameset(I)]. ∀[c:{c:name-morph(I;[])| (c y) = 0 ∈ ℕ2} ].
  ∀f:I-face(cubical-nerve(C);I)
    (arrow(cube(f)) c flip(c;y) (λx.Ax))
    = nerve_box_edge(box;c;y)
    ∈ (cat-arrow(C) nerve_box_label(box;c) nerve_box_label(box;flip(c;y))) 
    supposing (f ∈ box) ∧ (direction(f) = (c dimension(f)) ∈ ℕ2) ∧ (direction(f) = (flip(c;y) dimension(f)) ∈ ℕ2) 
  supposing (∃j1∈J. (∃j2∈J. ¬(j1 = j2 ∈ Cname))) ∨ (((c x) = i ∈ ℕ2) ∧ (¬↑null(J)))
Proof
Definitions occuring in Statement : 
nerve_box_edge: nerve_box_edge(box;c;y)
, 
nerve_box_label: nerve_box_label(box;L)
, 
cubical-nerve: cubical-nerve(X)
, 
open_box: open_box(X;I;J;x;i)
, 
face-cube: cube(f)
, 
face-direction: direction(f)
, 
face-dimension: dimension(f)
, 
I-face: I-face(X;I)
, 
name-morph-flip: flip(f;y)
, 
name-morph: name-morph(I;J)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
functor-arrow: arrow(F)
, 
cat-arrow: cat-arrow(C)
, 
small-category: SmallCategory
, 
l_exists: (∃x∈L. P[x])
, 
l_member: (x ∈ l)
, 
null: null(as)
, 
nil: []
, 
list: T List
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
lambda: λx.A[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
axiom: Ax
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
prop: ℙ
, 
and: P ∧ Q
, 
name-morph: name-morph(I;J)
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
nameset: nameset(L)
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
open_box: open_box(X;I;J;x;i)
, 
l_exists: (∃x∈L. P[x])
, 
exists: ∃x:A. B[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
less_than: a < b
Lemmas referenced : 
nerve_box_edge_same1, 
equal_wf, 
int_seg_wf, 
not_wf, 
assert_wf, 
null_wf3, 
subtype_rel_list, 
nameset_wf, 
top_wf, 
l_exists_wf, 
coordinate_name_wf, 
l_member_wf, 
I-face_wf, 
cubical-nerve_wf, 
face-direction_wf, 
face-dimension_wf, 
name-morph-flip_wf, 
name-morph_wf, 
nil_wf, 
or_wf, 
set_wf, 
equal-wf-T-base, 
extd-nameset-nil, 
open_box_wf, 
list_wf, 
small-category_wf, 
decidable__equal-coordinate_name, 
select_wf, 
int_seg_properties, 
length_wf, 
sq_stable__l_member, 
sq_stable__le, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
le_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
unionElimination, 
inlFormation, 
productEquality, 
natural_numberEquality, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
inrFormation, 
setEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
baseClosed, 
productElimination, 
independent_functionElimination, 
imageMemberEquality, 
imageElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
applyLambdaEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[box:open\_box(cubical-nerve(C);I;J;x;i)].  \mforall{}[y:nameset(I)].  \mforall{}[c:\{c:name-morph(I;[])|  (c  y)  =  0\}  ].
    \mforall{}f:I-face(cubical-nerve(C);I)
        (arrow(cube(f))  c  flip(c;y)  (\mlambda{}x.Ax))  =  nerve\_box\_edge(box;c;y) 
        supposing  (f  \mmember{}  box)
        \mwedge{}  (direction(f)  =  (c  dimension(f)))
        \mwedge{}  (direction(f)  =  (flip(c;y)  dimension(f))) 
    supposing  (\mexists{}j1\mmember{}J.  (\mexists{}j2\mmember{}J.  \mneg{}(j1  =  j2)))  \mvee{}  (((c  x)  =  i)  \mwedge{}  (\mneg{}\muparrow{}null(J)))
Date html generated:
2017_10_05-PM-03_38_29
Last ObjectModification:
2017_07_28-AM-11_25_52
Theory : cubical!sets
Home
Index