Nuprl Lemma : compatible-composition_wf

[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, phi ⊢ _}]. ∀[B:{Gamma, psi ⊢ _}]. ∀[cA:Gamma, phi ⊢ Compositon(A)].
[cB:Gamma, psi ⊢ Compositon(B)].
  compatible-composition{j:l, i:l}(Gamma; phi; psi; A; B; cA; cB) ∈ ℙ{[i j'']} supposing Gamma, (phi ∧ psi) ⊢ B


Proof




Definitions occuring in Statement :  compatible-composition: compatible-composition{j:l, i:l}(Gamma; phi; psi; A; B; cA; cB) composition-structure: Gamma ⊢ Compositon(A) same-cubical-type: Gamma ⊢ B context-subset: Gamma, phi face-and: (a ∧ b) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a compatible-composition: compatible-composition{j:l, i:l}(Gamma; phi; psi; A; B; cA; cB) member: t ∈ T prop: all: x:A. B[x] subtype_rel: A ⊆B csm-id-adjoin: [u] csm-id: 1(X) same-cubical-type: Gamma ⊢ B btrue: tt bfalse: ff eq_atom: =a y ifthenelse: if then else fi  record-update: r[x := v] mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) face-lattice: face-lattice(T;eq) face_lattice: face_lattice(I) record-select: r.x lattice-point: Point(l) face-presheaf: 𝔽 functor-ob: ob(F) I_cube: A(I) constant-cubical-type: (X) face-type: 𝔽 pi1: fst(t) cubical-type-at: A(a) so_apply: x[s] and: P ∧ Q so_lambda: λ2x.t[x] bdd-distributive-lattice: BoundedDistributiveLattice context-subset: Gamma, phi implies:  Q face-term-implies: Gamma ⊢ (phi  psi) composition-function: composition-function{j:l,i:l}(Gamma;A) composition-structure: Gamma ⊢ Compositon(A) guard: {T} true: True squash: T constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
Lemmas referenced :  cubical_set_wf cube_set_map_wf cube-context-adjoin_wf interval-type_wf context-subset_wf face-and_wf face-type_wf cubical-term-eqcd csm-ap-type_wf subset-cubical-type face-term-implies-subset face-term-and-implies1 context-subset-adjoin-subtype csm-id-adjoin_wf interval-0_wf csm-ap-term_wf csm-id-adjoin_wf-interval-0 constrained-cubical-term-eqcd same-cubical-type_wf face-term-and-implies2 composition-structure_wf cubical-type_wf istype-cubical-term sub_cubical_set_self cube_set_map_subtype3 context-subset-map csm-face-type context-subset-is-subset subset-cubical-term context-subset-subtype-and2 context-subset-subtype-and csm-same-cubical-type face-1-implies-subset face-1_wf csm-face-term-implies nat_wf fset_wf I_cube_wf lattice-1_wf subtype_rel_self cubical-term-at_wf lattice-join_wf lattice-meet_wf equal_wf bounded-lattice-axioms_wf bounded-lattice-structure-subtype lattice-axioms_wf lattice-structure_wf bounded-lattice-structure_wf subtype_rel_set face_lattice_wf lattice-point_wf I_cube_pair_redex_lemma csm-face-1 csm-id-adjoin_wf-interval-1 cubical_set_cumulativity-i-j equal_functionality_wrt_subtype_rel2 sub_cubical_set_functionality true_wf squash_wf thin-context-subset-adjoin
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule functionEquality cut thin instantiate introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination hypothesisEquality applyEquality lambdaEquality_alt cumulativity universeIsType universeEquality equalityTransitivity equalitySymmetry independent_isectElimination because_Cache Error :memTop,  inhabitedIsType isectEquality productEquality equalityIstype rename setElimination dependent_functionElimination lambdaFormation_alt hyp_replacement independent_functionElimination baseClosed imageMemberEquality natural_numberEquality imageElimination

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma,  psi  \mvdash{}  \_\}].
\mforall{}[cA:Gamma,  phi  \mvdash{}  Compositon(A)].  \mforall{}[cB:Gamma,  psi  \mvdash{}  Compositon(B)].
    compatible-composition\{j:l,  i:l\}(Gamma;  phi;  psi;  A;  B;  cA;  cB)  \mmember{}  \mBbbP{}\{[i  |  j'']\} 
    supposing  Gamma,  (phi  \mwedge{}  psi)  \mvdash{}  A  =  B



Date html generated: 2020_05_20-PM-05_15_05
Last ObjectModification: 2020_05_02-PM-01_24_12

Theory : cubical!type!theory


Home Index