Nuprl Lemma : csm-face-forall

[Gamma,Delta:j⊢]. ∀[sigma:Delta j⟶ Gamma]. ∀[phi:{Gamma.𝕀 ⊢ _:𝔽}].
  (((∀ phi))sigma (Delta ⊢ ∀ (phi)sigma+) ∈ {Delta ⊢ _:𝔽})


Proof




Definitions occuring in Statement :  face-forall: (∀ phi) face-type: 𝔽 interval-type: 𝕀 csm+: tau+ cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B csm-ap-term: (t)s face-forall: (∀ phi) squash: T prop: bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] cubical-term-at: u(a) cubical-term: {X ⊢ _:A} cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt true: True csm-ap: (s)x cc-adjoin-cube: (v;u) csm+: tau+ cc-snd: q cc-fst: p csm-comp: F csm-adjoin: (s;u) pi2: snd(t) compose: g interval-presheaf: 𝕀 all: x:A. B[x] names: names(I) nat:
Lemmas referenced :  cubical-term-equal face-type_wf csm-ap-term_wf face-forall_wf csm-face-type cubical-term_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf cube_set_map_wf cubical_set_wf face-type-at fl_all_wf squash_wf true_wf lattice-point_wf face_lattice_wf add-name_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf istype-nat fset_wf nat_wf new-name_wf subtype_rel_self I_cube_wf interval-type-at I_cube_pair_redex_lemma dM_inc_wf trivial-member-add-name1 fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf istype-int strong-subtype-self cc-adjoin-cube_wf istype-cubical-type-at cubical-type_wf csm-ap-restriction nc-s_wf f-subset-add-name
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate sqequalRule Error :memTop,  equalityTransitivity equalitySymmetry independent_isectElimination universeIsType applyEquality because_Cache inhabitedIsType functionExtensionality lambdaEquality_alt imageElimination productEquality cumulativity isectEquality setElimination rename natural_numberEquality imageMemberEquality baseClosed dependent_functionElimination dependent_set_memberEquality_alt intEquality

Latex:
\mforall{}[Gamma,Delta:j\mvdash{}].  \mforall{}[sigma:Delta  j{}\mrightarrow{}  Gamma].  \mforall{}[phi:\{Gamma.\mBbbI{}  \mvdash{}  \_:\mBbbF{}\}].
    (((\mforall{}  phi))sigma  =  (Delta  \mvdash{}  \mforall{}  (phi)sigma+))



Date html generated: 2020_05_20-PM-02_50_10
Last ObjectModification: 2020_04_04-PM-05_04_05

Theory : cubical!type!theory


Home Index