Nuprl Lemma : csm-face-forall
∀[Gamma,Delta:j⊢]. ∀[sigma:Delta j⟶ Gamma]. ∀[phi:{Gamma.𝕀 ⊢ _:𝔽}].
  (((∀ phi))sigma = (Delta ⊢ ∀ (phi)sigma+) ∈ {Delta ⊢ _:𝔽})
Proof
Definitions occuring in Statement : 
face-forall: (∀ phi)
, 
face-type: 𝔽
, 
interval-type: 𝕀
, 
csm+: tau+
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
csm-ap-term: (t)s
, 
face-forall: (∀ phi)
, 
squash: ↓T
, 
prop: ℙ
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
cubical-term-at: u(a)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
face-type: 𝔽
, 
constant-cubical-type: (X)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
true: True
, 
csm-ap: (s)x
, 
cc-adjoin-cube: (v;u)
, 
csm+: tau+
, 
cc-snd: q
, 
cc-fst: p
, 
csm-comp: G o F
, 
csm-adjoin: (s;u)
, 
pi2: snd(t)
, 
compose: f o g
, 
interval-presheaf: 𝕀
, 
all: ∀x:A. B[x]
, 
names: names(I)
, 
nat: ℕ
Lemmas referenced : 
cubical-term-equal, 
face-type_wf, 
csm-ap-term_wf, 
face-forall_wf, 
csm-face-type, 
cubical-term_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
cube_set_map_wf, 
cubical_set_wf, 
face-type-at, 
fl_all_wf, 
squash_wf, 
true_wf, 
lattice-point_wf, 
face_lattice_wf, 
add-name_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
istype-nat, 
fset_wf, 
nat_wf, 
new-name_wf, 
subtype_rel_self, 
I_cube_wf, 
interval-type-at, 
I_cube_pair_redex_lemma, 
dM_inc_wf, 
trivial-member-add-name1, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
cc-adjoin-cube_wf, 
istype-cubical-type-at, 
cubical-type_wf, 
csm-ap-restriction, 
nc-s_wf, 
f-subset-add-name
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
sqequalRule, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
universeIsType, 
applyEquality, 
because_Cache, 
inhabitedIsType, 
functionExtensionality, 
lambdaEquality_alt, 
imageElimination, 
productEquality, 
cumulativity, 
isectEquality, 
setElimination, 
rename, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
intEquality
Latex:
\mforall{}[Gamma,Delta:j\mvdash{}].  \mforall{}[sigma:Delta  j{}\mrightarrow{}  Gamma].  \mforall{}[phi:\{Gamma.\mBbbI{}  \mvdash{}  \_:\mBbbF{}\}].
    (((\mforall{}  phi))sigma  =  (Delta  \mvdash{}  \mforall{}  (phi)sigma+))
Date html generated:
2020_05_20-PM-02_50_10
Last ObjectModification:
2020_04_04-PM-05_04_05
Theory : cubical!type!theory
Home
Index