Nuprl Lemma : unglue-glue

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[T:{Gamma, phi ⊢ _}]. ∀[w:{Gamma, phi ⊢ _:(T ⟶ A)}].
[t:{Gamma, phi ⊢ _:T}]. ∀[a:{Gamma ⊢ _:A[phi |⟶ app(w; t)]}].
  (unglue(glue [phi ⊢→ t] a) a ∈ {Gamma ⊢ _:A})


Proof




Definitions occuring in Statement :  unglue-term: unglue(b) glue-term: glue [phi ⊢→ t] a constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 cubical-app: app(w; u) cubical-fun: (A ⟶ B) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} glue-term: glue [phi ⊢→ t] a unglue-term: unglue(b) cubical-term-at: u(a) member: t ∈ T cubical-term: {X ⊢ _:A} subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q pi2: snd(t) context-subset: Gamma, phi cubical-app: app(w; u)
Lemmas referenced :  fl-eq_wf subtype_rel_self lattice-point_wf face_lattice_wf lattice-1_wf eqtt_to_assert assert-fl-eq subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf cubical-term-at_wf I_cube_wf fset_wf nat_wf cubical-term-equal unglue-term_wf glue-term_wf subset-cubical-term context-subset-is-subset constrained-cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-app_wf_fun context-subset_wf thin-context-subset istype-cubical-term cubical-fun_wf cubical-type_wf face-type_wf cubical_set_wf I_cube_pair_redex_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalHypSubstitution setElimination thin rename cut functionExtensionality sqequalRule introduction extract_by_obid isectElimination hypothesisEquality applyEquality hypothesis because_Cache inhabitedIsType lambdaFormation_alt unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination instantiate lambdaEquality_alt productEquality cumulativity isectEquality universeIsType dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination independent_functionElimination voidElimination dependent_set_memberEquality_alt Error :memTop,  applyLambdaEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{Gamma,  phi  \mvdash{}  \_\}].
\mforall{}[w:\{Gamma,  phi  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{Gamma,  phi  \mvdash{}  \_:T\}].  \mforall{}[a:\{Gamma  \mvdash{}  \_:A[phi  |{}\mrightarrow{}  app(w;  t)]\}].
    (unglue(glue  [phi  \mvdash{}\mrightarrow{}  t]  a)  =  a)



Date html generated: 2020_05_20-PM-05_46_30
Last ObjectModification: 2020_04_21-PM-07_41_18

Theory : cubical!type!theory


Home Index