Nuprl Lemma : Euclid-Prop17

g:EuclideanPlane. ∀a,b,c,i,j,k:Point.  (a bc  acb abc ≅ ijk  (∀a1,a2,a3:Point.  (a1-a2-a3  ijk < a1a2a3)))


Proof




Definitions occuring in Statement :  hp-angle-sum: abc xyz ≅ def geo-lt-angle: abc < xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane guard: {T} and: P ∧ Q exists: x:A. B[x] uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a prop: cand: c∧ B basic-geometry-: BasicGeometry- geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m
Lemmas referenced :  geo-proper-extend-exists geo-O_wf geo-X_wf lsep-implies-sep geo-sep-O-X Euclid-prop16 geo-lt-angle-symm2 geo-strict-between_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf hp-angle-sum_wf geo-lsep_wf geo-point_wf Euclid-prop13 colinear-lsep-cycle lsep-all-sym geo-sep-sym geo-strict-between-sep1 geo-colinear-is-colinear-set geo-strict-between-implies-colinear length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than geo-strict-between-sep3 hp-angle-sum-subst4 straight-angles-congruent geo-cong-angle-refl lsep-symmetry2 hp-angle-sum-lt2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin sqequalRule hypothesisEquality setElimination rename hypothesis because_Cache independent_functionElimination productElimination universeIsType isectElimination applyEquality instantiate independent_isectElimination inhabitedIsType isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt productIsType

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,i,j,k:Point.
    (a  \#  bc  {}\mRightarrow{}  acb  +  abc  \mcong{}  ijk  {}\mRightarrow{}  (\mforall{}a1,a2,a3:Point.    (a1-a2-a3  {}\mRightarrow{}  ijk  <  a1a2a3)))



Date html generated: 2019_10_16-PM-02_32_50
Last ObjectModification: 2019_09_12-AM-11_55_22

Theory : euclidean!plane!geometry


Home Index