Nuprl Lemma : hp-angle-sum-lt2

e:EuclideanPlane. ∀a,b,c,x,y,z,i,j,k,a',b',c',x',y',z',i',j',k':Point.
  (abc ≅a a'b'c'
   abc xyz ≅ ijk
   a'b'c' x'y'z' ≅ i'j'k'
   i'-j'-k'
   bc
   yz
   xyz < x'y'z'
   ijk < i'j'k')


Proof




Definitions occuring in Statement :  hp-angle-sum: abc xyz ≅ def geo-lt-angle: abc < xyz geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-lsep: bc geo-strict-between: a-b-c geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a basic-geometry: BasicGeometry hp-angle-sum: abc xyz ≅ def exists: x:A. B[x] and: P ∧ Q geo-cong-angle: abc ≅a xyz cand: c∧ B geo-lt-angle: abc < xyz geo-out: out(p ab) not: ¬A false: False geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) select: L[n] cons: [a b] subtract: m iff: ⇐⇒ Q rev_implies:  Q basic-geometry-: BasicGeometry- oriented-plane: OrientedPlane geo-strict-between: a-b-c sq_exists: x:A [B[x]] euclidean-plane: EuclideanPlane sq_stable: SqStable(P) squash: T
Lemmas referenced :  lsep-lt-straight-angle geo-lt-angle_wf geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-strict-between_wf hp-angle-sum_wf geo-cong-angle_wf geo-point_wf geo-cong-angle-symmetry geo-sep-sym geo-strict-between-sep3 cong-angle-preserves-lsep_strong geo-cong-angle-symm2 hp-angle-sum-implies-lsep geo-cong-angle-preserves-lt-angle2 lsep-symmetry geo-out_weakening lsep-implies-sep geo-eq_weakening geo-between-trivial geo-between_wf istype-void out-preserves-angle-cong_1 colinear-lsep-cycle lsep-all-sym geo-colinear-is-colinear-set geo-out-colinear length_of_cons_lemma length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than lsep-iff-all-sep geo-between-implies-colinear geo-strict-between-implies-between geo-strict-between-sym geo-bet-out-out-bet geo-out_wf geo-between-symmetry colinear-lsep geo-between-sep lsep-inner-pasch-strict sq_stable__and sq_stable__geo-strict-between geo-out_transitivity out-cong-angle hp-angle-sum-eq2 geo-cong-angle-transitivity euclidean-plane-axioms colinear-lsep2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis universeIsType isectElimination applyEquality instantiate independent_isectElimination sqequalRule because_Cache inhabitedIsType productElimination independent_pairFormation productIsType functionIsType isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt isectIsType setElimination rename imageMemberEquality baseClosed imageElimination promote_hyp

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z,i,j,k,a',b',c',x',y',z',i',j',k':Point.
    (abc  \mcong{}\msuba{}  a'b'c'
    {}\mRightarrow{}  abc  +  xyz  \mcong{}  ijk
    {}\mRightarrow{}  a'b'c'  +  x'y'z'  \mcong{}  i'j'k'
    {}\mRightarrow{}  i'-j'-k'
    {}\mRightarrow{}  a  \#  bc
    {}\mRightarrow{}  x  \#  yz
    {}\mRightarrow{}  xyz  <  x'y'z'
    {}\mRightarrow{}  ijk  <  i'j'k')



Date html generated: 2019_10_16-PM-02_32_31
Last ObjectModification: 2019_09_12-AM-11_57_50

Theory : euclidean!plane!geometry


Home Index