Nuprl Lemma : geo-ge-between-sep
∀g:EuclideanPlane. ∀a,b,c,a1,a2,x,y,t:Point.  (a_b_c 
⇒ b ≠ c 
⇒ ab ≅ a1a2 
⇒ a1a2 ≥ xy 
⇒ a_t_c 
⇒ at ≅ xy 
⇒ t ≠ c)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-ge: cd ≥ ab
, 
geo-congruent: ab ≅ cd
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
basic-geometry: BasicGeometry
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
true: True
, 
euclidean-plane: EuclideanPlane
, 
squash: ↓T
, 
geo-eq: a ≡ b
, 
false: False
, 
or: P ∨ Q
, 
not: ¬A
, 
stable: Stable{P}
, 
geo-le: p ≤ q
, 
exists: ∃x:A. B[x]
, 
sq_stable: SqStable(P)
, 
basic-geometry-: BasicGeometry-
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
cand: A c∧ B
, 
geo-ge: cd ≥ ab
Lemmas referenced : 
geo-point_wf, 
geo-sep_wf, 
geo-ge_wf, 
geo-between_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-congruent_wf, 
geo-congruent-iff-length, 
geo-le-iff, 
iff_weakening_equal, 
subtype_rel_self, 
geo-mk-seg_wf, 
geo-length_wf, 
basic-geometry_wf, 
geo-length-type_wf, 
true_wf, 
squash_wf, 
geo-le_wf, 
minimal-not-not-excluded-middle, 
geo-between_functionality, 
geo-eq_weakening, 
geo-congruent_functionality, 
minimal-double-negation-hyp-elim, 
not_wf, 
or_wf, 
false_wf, 
stable__geo-between, 
sq_stable__geo-between, 
geo-length-equality, 
equal_wf, 
geo-ge_functionality, 
geo-congruent-between-exists, 
geo-X_wf, 
euclidean-plane-axioms, 
geo-sep-sym, 
geo-congruent-sep, 
geo-le-sep, 
geo-le_weakening, 
geo-proper-extend-exists, 
geo-between-outer-trans, 
geo-between-exchange4, 
geo-between-inner-trans, 
geo-strict-between-implies-between, 
geo-O_wf, 
geo-strict-between-sep3, 
geo-construction-unicity, 
geo-between-symmetry, 
geo-between-exchange3, 
geo-congruence-identity-eq, 
geo-eq-self, 
geo-zero-length-iff, 
geo-le-zero, 
exists_wf, 
geo-zero-length_wf, 
subtype-geo-length-type, 
geo-between-trivial, 
geo-eq_transitivity, 
geo-eq_inversion, 
geo-between-sep
Rules used in proof : 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
equalitySymmetry, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
universeEquality, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
rename, 
setElimination, 
equalityTransitivity, 
imageElimination, 
lambdaEquality, 
voidElimination, 
unionElimination, 
functionEquality, 
setEquality, 
productEquality, 
independent_pairFormation, 
dependent_pairFormation
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,a1,a2,x,y,t:Point.
    (a\_b\_c  {}\mRightarrow{}  b  \mneq{}  c  {}\mRightarrow{}  ab  \mcong{}  a1a2  {}\mRightarrow{}  a1a2  \mgeq{}  xy  {}\mRightarrow{}  a\_t\_c  {}\mRightarrow{}  at  \mcong{}  xy  {}\mRightarrow{}  t  \mneq{}  c)
Date html generated:
2019_10_16-PM-02_52_07
Last ObjectModification:
2018_09_18-PM-03_07_17
Theory : euclidean!plane!geometry
Home
Index