Nuprl Lemma : in-hull-transitivity
∀g:OrientedPlane. ∀xs:{xs:Point List| geo-general-position(g;xs)} . ∀i,j:ℕ||xs||.
  ((¬(i = j ∈ ℤ)) 
⇒ ij ∈ Hull(xs) 
⇒ Trans({k:ℕ||xs||| (¬(k = i ∈ ℤ)) ∧ (¬(k = j ∈ ℤ))} x,y.(¬(x = y ∈ ℤ)) ∧ (↑x L iy)\000C))
Proof
Definitions occuring in Statement : 
in-hull: ij ∈ Hull(xs)
, 
left-test: i L jk
, 
geo-general-position: geo-general-position(g;xs)
, 
oriented-plane: OrientedPlane
, 
geo-point: Point
, 
length: ||as||
, 
list: T List
, 
trans: Trans(T;x,y.E[x; y])
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
false: False
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
not: ¬A
, 
cand: A c∧ B
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
member: t ∈ T
, 
trans: Trans(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
sq_type: SQType(T)
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
in-hull: ij ∈ Hull(xs)
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
geo-lsep: a # bc
Lemmas referenced : 
list_wf, 
geo-general-position_wf, 
in-hull_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
Error :o-geo-structure_wf, 
Error :oriented-plane_wf, 
subtype_rel_transitivity, 
Error :oriented-plane-subtype1, 
Error :o-geo-structure-subtype, 
int_seg_wf, 
set_wf, 
int_formula_prop_wf, 
int_formula_prop_not_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformnot_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
geo-point_wf, 
length_wf, 
int_seg_properties, 
left-test_wf, 
assert_wf, 
equal_wf, 
not_wf, 
int_subtype_base, 
subtype_base_sq, 
left-test-symmetry, 
satisfiable-full-omega-tt, 
Error :geo-point_wf, 
Error :geo-primitives_wf, 
Error :geo-structure_wf, 
Error :oriented-plane_wf, 
Error :oriented-plane_subtype, 
Error :real-geometry-subtype, 
Error :geo-structure-subtype-primitives, 
assert_functionality_wrt_uiff, 
bnot-left-test, 
bnot_wf, 
btrue_neq_bfalse, 
and_wf, 
bfalse_wf, 
assert_elim, 
bool_wf, 
lelt_wf, 
sq_stable__assert, 
assert-left-test, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
itermConstant_wf, 
intformle_wf, 
decidable__le, 
select_wf, 
geo-left-transitivity, 
geo-general-position-implies
Rules used in proof : 
instantiate, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
sqequalRule, 
applyEquality, 
natural_numberEquality, 
dependent_set_memberEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
isectElimination, 
extract_by_obid, 
introduction, 
productEquality, 
productElimination, 
sqequalHypSubstitution, 
cut, 
rename, 
thin, 
setElimination, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
equalitySymmetry, 
equalityTransitivity, 
cumulativity, 
promote_hyp, 
computeAll, 
applyLambdaEquality, 
levelHypothesis, 
addLevel, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
unionElimination
Latex:
\mforall{}g:OrientedPlane.  \mforall{}xs:\{xs:Point  List|  geo-general-position(g;xs)\}  .  \mforall{}i,j:\mBbbN{}||xs||.
    ((\mneg{}(i  =  j))  {}\mRightarrow{}  ij  \mmember{}  Hull(xs)  {}\mRightarrow{}  Trans(\{k:\mBbbN{}||xs|||  (\mneg{}(k  =  i))  \mwedge{}  (\mneg{}(k  =  j))\}  ;x,y.(\mneg{}(x  =  y))  \mwedge{}  (\muparrow{}x  L\000C  iy)))
Date html generated:
2017_10_02-PM-06_52_06
Last ObjectModification:
2017_08_08-PM-00_38_55
Theory : euclidean!plane!geometry
Home
Index