Nuprl Lemma : punit-norm1
∀[n:ℕ]. ∀[a:ℙ^n].  (||u(a)|| = r1)
Proof
Definitions occuring in Statement : 
punit: u(a)
, 
real-proj: ℙ^n
, 
real-vec-norm: ||x||
, 
req: x = y
, 
int-to-real: r(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
, 
punit: u(a)
, 
real-proj: ℙ^n
, 
rneq: x ≠ y
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rtermConstant: "const"
, 
rat_term_ind: rat_term_ind, 
pi1: fst(t)
, 
true: True
, 
rtermMultiply: left "*" right
, 
rtermDivide: num "/" denom
, 
rtermVar: rtermVar(var)
, 
pi2: snd(t)
Lemmas referenced : 
req_witness, 
real-vec-norm_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
punit_wf, 
int-to-real_wf, 
real-proj_wf, 
istype-nat, 
real-vec-mul_wf, 
rdiv_wf, 
proj-norm-positive, 
rless_wf, 
rmul_wf, 
rabs_wf, 
req_functionality, 
real-vec-norm-mul, 
req_weakening, 
real-vec-norm-nonneg, 
rleq-int, 
istype-false, 
assert-rat-term-eq2, 
rtermMultiply_wf, 
rtermDivide_wf, 
rtermConstant_wf, 
rtermVar_wf, 
rmul_functionality, 
rabs-rdiv, 
rneq_functionality, 
rabs-of-nonneg, 
rdiv_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality_alt, 
addEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
isect_memberEquality_alt, 
because_Cache, 
isectIsTypeImplies, 
inhabitedIsType, 
closedConclusion, 
inrFormation_alt, 
productElimination, 
lambdaFormation_alt
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbP{}\^{}n].    (||u(a)||  =  r1)
Date html generated:
2020_05_20-PM-01_16_37
Last ObjectModification:
2019_12_09-PM-04_23_27
Theory : inner!product!spaces
Home
Index