Nuprl Lemma : punit-norm1

[n:ℕ]. ∀[a:ℙ^n].  (||u(a)|| r1)


Proof




Definitions occuring in Statement :  punit: u(a) real-proj: ^n real-vec-norm: ||x|| req: y int-to-real: r(n) nat: uall: [x:A]. B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: punit: u(a) real-proj: ^n rneq: x ≠ y guard: {T} uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) rat_term_to_real: rat_term_to_real(f;t) rtermConstant: "const" rat_term_ind: rat_term_ind pi1: fst(t) true: True rtermMultiply: left "*" right rtermDivide: num "/" denom rtermVar: rtermVar(var) pi2: snd(t)
Lemmas referenced :  req_witness real-vec-norm_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf istype-le punit_wf int-to-real_wf real-proj_wf istype-nat real-vec-mul_wf rdiv_wf proj-norm-positive rless_wf rmul_wf rabs_wf req_functionality real-vec-norm-mul req_weakening real-vec-norm-nonneg rleq-int istype-false assert-rat-term-eq2 rtermMultiply_wf rtermDivide_wf rtermConstant_wf rtermVar_wf rmul_functionality rabs-rdiv rneq_functionality rabs-of-nonneg rdiv_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality_alt addEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination isect_memberEquality_alt because_Cache isectIsTypeImplies inhabitedIsType closedConclusion inrFormation_alt productElimination lambdaFormation_alt

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbP{}\^{}n].    (||u(a)||  =  r1)



Date html generated: 2020_05_20-PM-01_16_37
Last ObjectModification: 2019_12_09-PM-04_23_27

Theory : inner!product!spaces


Home Index