Nuprl Lemma : in-rat-half-cube

k:ℕ. ∀c,h:ℚCube(k).  ((↑is-half-cube(k;h;c))  (∀x:ℝ^k. (in-rat-cube(k;x;h)  in-rat-cube(k;x;c))))


Proof




Definitions occuring in Statement :  in-rat-cube: in-rat-cube(k;p;c) real-vec: ^n nat: assert: b all: x:A. B[x] implies:  Q is-half-cube: is-half-cube(k;h;c) rational-cube: Cube(k)
Definitions unfolded in proof :  rge: x ≥ y rev_uimplies: rev_uimplies(P;Q) rev_implies:  Q iff: ⇐⇒ Q ifthenelse: if then else fi  band: p ∧b q bfalse: ff guard: {T} sq_type: SQType(T) or: P ∨ Q cand: c∧ B prop: nat: pi2: snd(t) pi1: fst(t) is-half-interval: is-half-interval(I;J) rational-interval: Interval rational-cube: Cube(k) real-vec: ^n in-rat-cube: in-rat-cube(k;p;c) uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  rleq_weakening_equal rleq_functionality_wrt_implies qle-qavg-iff-1 qavg-qle-iff-1 rleq-rat2real rleq_transitivity assert_of_band assert_of_bor iff_weakening_uiff iff_transitivity rationals_wf equal_wf bfalse_wf assert-qeq btrue_wf band_wf eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases qeq_wf2 bor_wf assert_wf qavg_wf rleq_wf rat2real_wf istype-nat rational-cube_wf is-half-cube_wf istype-assert real-vec_wf in-rat-cube_wf int_seg_wf assert-is-half-cube
Rules used in proof :  inrFormation_alt inlFormation_alt isect_memberEquality_alt productEquality because_Cache unionEquality cumulativity instantiate unionIsType promote_hyp applyLambdaEquality productIsType independent_pairFormation dependent_set_memberEquality_alt hyp_replacement unionElimination rename setElimination natural_numberEquality universeIsType independent_functionElimination equalitySymmetry equalityTransitivity equalityIstype sqequalRule inhabitedIsType applyEquality dependent_functionElimination independent_isectElimination productElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c,h:\mBbbQ{}Cube(k).
    ((\muparrow{}is-half-cube(k;h;c))  {}\mRightarrow{}  (\mforall{}x:\mBbbR{}\^{}k.  (in-rat-cube(k;x;h)  {}\mRightarrow{}  in-rat-cube(k;x;c))))



Date html generated: 2019_11_04-PM-04_43_03
Last ObjectModification: 2019_10_31-AM-10_26_12

Theory : real!vectors


Home Index