Nuprl Lemma : cosine-approx_wf

[x:ℝ]. ∀[k:ℕ]. ∀[N:ℕ+].  (cosine-approx(x;k;N) ∈ ℤ)


Proof




Definitions occuring in Statement :  cosine-approx: cosine-approx(x;k;N) real: nat_plus: + nat: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cosine-approx: cosine-approx(x;k;N) nat: true: True nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] guard: {T} false: False bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: subtype_rel: A ⊆B bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  poly-approx_wf subtype_base_sq int_subtype_base istype-int eq_int_wf eqtt_to_assert assert_of_eq_int int-rdiv_wf fact_wf nat_properties nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMultiply_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf istype-le int-to-real_wf eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int rnexp_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-less_than nat_plus_wf istype-nat real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality_alt remainderEquality setElimination rename because_Cache hypothesis closedConclusion natural_numberEquality lambdaFormation_alt instantiate cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination equalityIstype baseClosed sqequalBase inhabitedIsType unionElimination equalityElimination productElimination dependent_set_memberEquality_alt multiplyEquality approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt independent_pairFormation universeIsType applyEquality promote_hyp minusEquality axiomEquality isectIsTypeImplies

Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[N:\mBbbN{}\msupplus{}].    (cosine-approx(x;k;N)  \mmember{}  \mBbbZ{})



Date html generated: 2019_10_29-AM-10_36_16
Last ObjectModification: 2019_02_02-AM-11_22_18

Theory : reals


Home Index