Nuprl Lemma : cosine-approx_wf
∀[x:ℝ]. ∀[k:ℕ]. ∀[N:ℕ+].  (cosine-approx(x;k;N) ∈ ℤ)
Proof
Definitions occuring in Statement : 
cosine-approx: cosine-approx(x;k;N)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cosine-approx: cosine-approx(x;k;N)
, 
nat: ℕ
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
false: False
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
poly-approx_wf, 
subtype_base_sq, 
int_subtype_base, 
istype-int, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
int-rdiv_wf, 
fact_wf, 
nat_properties, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
int-to-real_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
rnexp_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-less_than, 
nat_plus_wf, 
istype-nat, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality_alt, 
remainderEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
closedConclusion, 
natural_numberEquality, 
lambdaFormation_alt, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
equalityIstype, 
baseClosed, 
sqequalBase, 
inhabitedIsType, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_set_memberEquality_alt, 
multiplyEquality, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
independent_pairFormation, 
universeIsType, 
applyEquality, 
promote_hyp, 
minusEquality, 
axiomEquality, 
isectIsTypeImplies
Latex:
\mforall{}[x:\mBbbR{}].  \mforall{}[k:\mBbbN{}].  \mforall{}[N:\mBbbN{}\msupplus{}].    (cosine-approx(x;k;N)  \mmember{}  \mBbbZ{})
Date html generated:
2019_10_29-AM-10_36_16
Last ObjectModification:
2019_02_02-AM-11_22_18
Theory : reals
Home
Index