Nuprl Lemma : derivative-function-rminus
∀f,f':ℝ ⟶ ℝ.
  ((∀x,y:ℝ.  ((x = y) 
⇒ (f'[x] = f'[y])))
  
⇒ d(f[x])/dx = λx.f'[x] on (-∞, ∞)
  
⇒ d(f[-(x)])/dx = λx.-(f'[-(x)]) on (-∞, ∞))
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I
, 
riiint: (-∞, ∞)
, 
req: x = y
, 
rminus: -(x)
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
rfun: I ⟶ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
uimplies: b supposing a
, 
label: ...$L... t
, 
true: True
, 
rfun-eq: rfun-eq(I;f;g)
, 
r-ap: f(x)
, 
squash: ↓T
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
simple-chain-rule, 
riiint_wf, 
rminus_wf, 
real_wf, 
i-member_wf, 
int-to-real_wf, 
member_riiint_lemma, 
subtype_rel_dep_function, 
true_wf, 
subtype_rel_self, 
set_wf, 
iproper-riiint, 
req_weakening, 
req_wf, 
derivative_wf, 
all_wf, 
derivative-minus, 
derivative-id, 
rmul_wf, 
derivative_functionality, 
uiff_transitivity3, 
squash_wf, 
rminus-int, 
uiff_transitivity, 
req_functionality, 
rmul-minus, 
rmul_over_rminus, 
rminus_functionality, 
rmul-one-both
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
setEquality, 
natural_numberEquality, 
because_Cache, 
applyEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_functionElimination, 
functionExtensionality, 
functionEquality, 
minusEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
productElimination
Latex:
\mforall{}f,f':\mBbbR{}  {}\mrightarrow{}  \mBbbR{}.
    ((\mforall{}x,y:\mBbbR{}.    ((x  =  y)  {}\mRightarrow{}  (f'[x]  =  f'[y])))
    {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.f'[x]  on  (-\minfty{},  \minfty{})
    {}\mRightarrow{}  d(f[-(x)])/dx  =  \mlambda{}x.-(f'[-(x)])  on  (-\minfty{},  \minfty{}))
Date html generated:
2016_10_26-AM-11_31_12
Last ObjectModification:
2016_09_05-AM-10_19_58
Theory : reals
Home
Index