Nuprl Lemma : max-metric-sep
∀n:ℕ. ∀x,y:ℝ^n. (r0 < mdist(max-metric(n);x;y)
⇐⇒ ∃i:ℕn. x i ≠ y i)
Proof
Definitions occuring in Statement :
max-metric: max-metric(n)
,
real-vec: ℝ^n
,
mdist: mdist(d;x;y)
,
rneq: x ≠ y
,
rless: x < y
,
int-to-real: r(n)
,
int_seg: {i..j-}
,
nat: ℕ
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
iff: P
⇐⇒ Q
,
apply: f a
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
metric-leq: d1 ≤ d2
,
scale-metric: c*d
,
mdist: mdist(d;x;y)
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
implies: P
⇒ Q
,
guard: {T}
,
uimplies: b supposing a
,
prop: ℙ
,
rev_implies: P
⇐ Q
,
nat: ℕ
,
decidable: Dec(P)
,
or: P ∨ Q
,
sq_type: SQType(T)
,
rn-metric: rn-metric(n)
,
rless: x < y
,
sq_exists: ∃x:A [B[x]]
,
nat_plus: ℕ+
,
ge: i ≥ j
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
top: Top
,
real-vec: ℝ^n
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
subtype_rel: A ⊆r B
,
less_than: a < b
,
squash: ↓T
,
uiff: uiff(P;Q)
,
req_int_terms: t1 ≡ t2
Lemmas referenced :
max-metric-leq-rn-metric,
rn-metric-leq-max-metric,
rless_transitivity1,
int-to-real_wf,
mdist_wf,
real-vec_wf,
max-metric_wf,
rn-metric_wf,
rless_wf,
decidable__equal_int,
subtype_base_sq,
int_subtype_base,
rmul_preserves_rless,
rless-int,
nat_plus_properties,
nat_properties,
decidable__lt,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformless_wf,
itermConstant_wf,
itermVar_wf,
intformeq_wf,
intformle_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_eq_lemma,
int_formula_prop_le_lemma,
int_formula_prop_wf,
rn-metric-sep,
int_seg_wf,
rneq_wf,
istype-nat,
real-vec-dist_wf,
istype-le,
itermAdd_wf,
int_term_value_add_lemma,
rmul_wf,
itermSubtract_wf,
itermMultiply_wf,
rless_functionality,
req_weakening,
real-vec-dist-dim0,
req-iff-rsub-is-0,
real_polynomial_null,
real_term_value_sub_lemma,
real_term_value_mul_lemma,
real_term_value_const_lemma,
real_term_value_var_lemma
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
dependent_functionElimination,
because_Cache,
sqequalRule,
independent_pairFormation,
hypothesis,
natural_numberEquality,
independent_functionElimination,
independent_isectElimination,
universeIsType,
setElimination,
rename,
unionElimination,
instantiate,
cumulativity,
intEquality,
equalityTransitivity,
equalitySymmetry,
productElimination,
approximateComputation,
dependent_pairFormation_alt,
lambdaEquality_alt,
int_eqEquality,
isect_memberEquality_alt,
voidElimination,
promote_hyp,
productIsType,
applyEquality,
dependent_set_memberEquality_alt,
inhabitedIsType,
imageElimination
Latex:
\mforall{}n:\mBbbN{}. \mforall{}x,y:\mBbbR{}\^{}n. (r0 < mdist(max-metric(n);x;y) \mLeftarrow{}{}\mRightarrow{} \mexists{}i:\mBbbN{}n. x i \mneq{} y i)
Date html generated:
2019_10_30-AM-08_43_44
Last ObjectModification:
2019_10_02-AM-11_06_39
Theory : reals
Home
Index