Nuprl Lemma : real-vec-between-symmetry
∀n:ℕ. ∀a,b,c:ℝ^n.  (a-b-c 
⇒ c-b-a)
Proof
Definitions occuring in Statement : 
real-vec-between: a-b-c
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
real-vec-between: a-b-c
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
prop: ℙ
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
rsub: x - y
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rsub_wf, 
int-to-real_wf, 
i-member_wf, 
rooint_wf, 
req-vec_wf, 
real-vec-add_wf, 
real-vec-mul_wf, 
real-vec-between_wf, 
real-vec_wf, 
nat_wf, 
member_rooint_lemma, 
radd-preserves-rless, 
trivial-rsub-rless, 
radd_wf, 
rminus_wf, 
rless_wf, 
rless_functionality, 
req_weakening, 
radd-zero-both, 
radd_functionality, 
radd-rminus-both, 
radd_comm, 
radd-ac, 
req_wf, 
rmul_wf, 
uiff_transitivity, 
req_functionality, 
rminus-radd, 
rmul-int, 
rmul_functionality, 
rminus-as-rmul, 
req_transitivity, 
req_inversion, 
rminus-rminus, 
radd-assoc, 
radd-int, 
req-vec_functionality, 
req-vec_weakening, 
real-vec-add_functionality, 
real-vec-mul_functionality, 
real-vec-add-com
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
hypothesisEquality, 
independent_pairFormation, 
productEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_functionElimination, 
independent_isectElimination, 
addLevel, 
levelHypothesis, 
sqequalRule, 
minusEquality, 
multiplyEquality, 
because_Cache, 
addEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.    (a-b-c  {}\mRightarrow{}  c-b-a)
Date html generated:
2016_10_26-AM-10_18_03
Last ObjectModification:
2016_09_24-PM-09_50_28
Theory : reals
Home
Index