Nuprl Lemma : real-vec-dist-translation2

[n:ℕ]. ∀[x,y,z:ℝ^n].  (d(z x;z y) d(x;y))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) real-vec-add: Y real-vec: ^n req: y nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B prop: implies:  Q real-vec-sub: Y real-vec-add: Y req-vec: req-vec(n;x;y) all: x:A. B[x] nat: real-vec: ^n rsub: y rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  real-vec-dist-equal-iff real-vec-add_wf req_witness real-vec-dist_wf real_wf rleq_wf int-to-real_wf real-vec_wf nat_wf int_seg_wf req_wf rsub_wf radd_wf rmul_wf rminus_wf req_weakening uiff_transitivity req_functionality radd_functionality rminus-radd req_inversion radd-assoc req_transitivity radd-ac rmul-identity1 rmul-distrib2 rminus-as-rmul rmul_functionality radd-int rmul-zero-both radd_comm radd-zero-both dot-product_wf real-vec-sub_wf dot-product-comm dot-product_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination independent_isectElimination applyEquality lambdaEquality setElimination rename setEquality natural_numberEquality sqequalRule independent_functionElimination isect_memberEquality because_Cache lambdaFormation minusEquality addEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y,z:\mBbbR{}\^{}n].    (d(z  +  x;z  +  y)  =  d(x;y))



Date html generated: 2016_10_26-AM-10_26_41
Last ObjectModification: 2016_09_28-PM-10_05_41

Theory : reals


Home Index