Nuprl Lemma : real-vec-right-angle-lemma

[n:ℕ]. ∀[x,z:ℝ^n].  uiff(x⋅r0;d(z;x) d(z;r(-1)*x))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) dot-product: x⋅y real-vec-mul: a*X real-vec: ^n req: y int-to-real: r(n) nat: uiff: uiff(P;Q) uall: [x:A]. B[x] minus: -n natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q prop: subtype_rel: A ⊆B rev_implies:  Q iff: ⇐⇒ Q rev_uimplies: rev_uimplies(P;Q) all: x:A. B[x] req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top rneq: x ≠ y guard: {T} or: P ∨ Q less_than: a < b squash: T less_than': less_than'(a;b) true: True
Lemmas referenced :  real-vec_wf nat_wf req_witness rsub_wf dot-product_wf rmul_wf int-to-real_wf req_wf real-vec-mul_wf uiff_wf real-vec-sub_wf real-vec-dist_wf real_wf rleq_wf iff_weakening_uiff real-vec-dist-equal-iff req_functionality req_transitivity dot-product-linearity1-sub rsub_functionality req_weakening dot-product-linearity2 rmul_functionality itermSubtract_wf itermVar_wf itermConstant_wf itermMultiply_wf req-iff-rsub-is-0 dot-product-comm real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_const_lemma real_term_value_mul_lemma radd-preserves-req radd_wf itermAdd_wf real_term_value_add_lemma rmul_preserves_req rless-int rless_wf rmul_comm rmul-zero-both req_inversion
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation because_Cache cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_pairFormation minusEquality natural_numberEquality independent_functionElimination cumulativity applyEquality lambdaEquality setElimination rename setEquality sqequalRule addLevel productElimination independent_isectElimination dependent_functionElimination approximateComputation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality inrFormation imageMemberEquality baseClosed

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,z:\mBbbR{}\^{}n].    uiff(x\mcdot{}z  =  r0;d(z;x)  =  d(z;r(-1)*x))



Date html generated: 2018_05_22-PM-02_26_27
Last ObjectModification: 2018_03_26-AM-09_56_25

Theory : reals


Home Index