Nuprl Lemma : reg-seq-add_functionality_wrt_bdd-diff
∀x,x',y,y':ℕ+ ⟶ ℤ.  (bdd-diff(x;x') 
⇒ bdd-diff(y;y') 
⇒ bdd-diff(reg-seq-add(x;y);reg-seq-add(x';y')))
Proof
Definitions occuring in Statement : 
reg-seq-add: reg-seq-add(x;y)
, 
bdd-diff: bdd-diff(f;g)
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
length: ||as||
, 
list_ind: list_ind, 
cons: [a / b]
, 
nil: []
, 
it: ⋅
, 
prop: ℙ
, 
top: Top
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
select: L[n]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
subtract: n - m
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
reg-seq-add: reg-seq-add(x;y)
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat_plus: ℕ+
Lemmas referenced : 
reg-seq-list-add_functionality_wrt_bdd-diff, 
cons_wf, 
nat_plus_wf, 
nil_wf, 
length_wf, 
int_seg_wf, 
bdd-diff_wf, 
length_of_cons_lemma, 
length_of_nil_lemma, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
int_seg_subtype, 
false_wf, 
int_seg_cases, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
squash_wf, 
true_wf, 
equal_wf, 
reg-seq-list-add-as-l_sum, 
iff_weakening_equal, 
map_cons_lemma, 
map_nil_lemma, 
l_sum_cons_lemma, 
l_sum_nil_lemma, 
nat_plus_properties, 
less_than_wf, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
functionEquality, 
hypothesis, 
intEquality, 
functionExtensionality, 
applyEquality, 
hypothesisEquality, 
independent_functionElimination, 
sqequalRule, 
independent_pairFormation, 
natural_numberEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
unionElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis_subsumption, 
addEquality, 
productElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
computeAll, 
hyp_replacement, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
dependent_set_memberEquality
Latex:
\mforall{}x,x',y,y':\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.
    (bdd-diff(x;x')  {}\mRightarrow{}  bdd-diff(y;y')  {}\mRightarrow{}  bdd-diff(reg-seq-add(x;y);reg-seq-add(x';y')))
Date html generated:
2017_10_02-PM-07_14_04
Last ObjectModification:
2017_07_28-AM-07_20_10
Theory : reals
Home
Index