Nuprl Lemma : reg-seq-add_functionality_wrt_bdd-diff

x,x',y,y':ℕ+ ⟶ ℤ.  (bdd-diff(x;x')  bdd-diff(y;y')  bdd-diff(reg-seq-add(x;y);reg-seq-add(x';y')))


Proof




Definitions occuring in Statement :  reg-seq-add: reg-seq-add(x;y) bdd-diff: bdd-diff(f;g) nat_plus: + all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B length: ||as|| list_ind: list_ind cons: [a b] nil: [] it: prop: top: Top int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) guard: {T} select: L[n] le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A subtract: m lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] squash: T reg-seq-add: reg-seq-add(x;y) true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q nat_plus: +
Lemmas referenced :  reg-seq-list-add_functionality_wrt_bdd-diff cons_wf nat_plus_wf nil_wf length_wf int_seg_wf bdd-diff_wf length_of_cons_lemma length_of_nil_lemma decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties int_seg_subtype false_wf int_seg_cases satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf squash_wf true_wf equal_wf reg-seq-list-add-as-l_sum iff_weakening_equal map_cons_lemma map_nil_lemma l_sum_cons_lemma l_sum_nil_lemma nat_plus_properties less_than_wf intformnot_wf intformeq_wf itermAdd_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination functionEquality hypothesis intEquality functionExtensionality applyEquality hypothesisEquality independent_functionElimination sqequalRule independent_pairFormation natural_numberEquality isect_memberEquality voidElimination voidEquality setElimination rename unionElimination instantiate cumulativity independent_isectElimination because_Cache equalityTransitivity equalitySymmetry hypothesis_subsumption addEquality productElimination dependent_pairFormation lambdaEquality int_eqEquality computeAll hyp_replacement imageElimination universeEquality imageMemberEquality baseClosed dependent_set_memberEquality

Latex:
\mforall{}x,x',y,y':\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.
    (bdd-diff(x;x')  {}\mRightarrow{}  bdd-diff(y;y')  {}\mRightarrow{}  bdd-diff(reg-seq-add(x;y);reg-seq-add(x';y')))



Date html generated: 2017_10_02-PM-07_14_04
Last ObjectModification: 2017_07_28-AM-07_20_10

Theory : reals


Home Index