Nuprl Lemma : reg-seq-list-add_functionality_wrt_bdd-diff
∀L,L':(ℕ+ ⟶ ℤ) List.
  (((||L|| = ||L'|| ∈ ℤ) ∧ (∀i:ℕ||L||. bdd-diff(L[i];L'[i]))) ⇒ bdd-diff(reg-seq-list-add(L);reg-seq-list-add(L')))
Proof
Definitions occuring in Statement : 
reg-seq-list-add: reg-seq-list-add(L), 
bdd-diff: bdd-diff(f;g), 
select: L[n], 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
squash: ↓T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
so_apply: x[s], 
map: map(f;as), 
list_ind: list_ind, 
nil: [], 
it: ⋅, 
select: L[n], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
ge: i ≥ j , 
le: A ≤ B, 
uiff: uiff(P;Q), 
subtract: n - m, 
less_than: a < b, 
less_than': less_than'(a;b), 
nat_plus: ℕ+, 
cons: [a / b], 
bdd-diff: bdd-diff(f;g), 
nat: ℕ, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
bdd-diff_wf, 
squash_wf, 
true_wf, 
nat_plus_wf, 
reg-seq-list-add-as-l_sum, 
iff_weakening_equal, 
equal_wf, 
length_wf, 
all_wf, 
int_seg_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
list_wf, 
list_induction, 
l_sum_wf, 
map_wf, 
equal-wf-base-T, 
nil_wf, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
map_nil_lemma, 
l_sum_nil_lemma, 
equal-wf-base, 
length_of_cons_lemma, 
map_cons_lemma, 
l_sum_cons_lemma, 
non_neg_length, 
itermAdd_wf, 
int_term_value_add_lemma, 
cons_wf, 
add-is-int-iff, 
false_wf, 
equal-wf-T-base, 
decidable__equal_int, 
add-member-int_seg2, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
lelt_wf, 
select-cons-tl, 
add-subtract-cancel, 
add_nat_plus, 
length_wf_nat, 
less_than_wf, 
nat_plus_properties, 
nat_properties, 
le_wf, 
absval_wf, 
trivial-bdd-diff, 
nat_wf, 
itermMinus_wf, 
int_term_value_minus_lemma, 
and_wf, 
le_functionality, 
le_weakening, 
int-triangle-inequality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
applyEquality, 
lambdaEquality, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
functionEquality, 
intEquality, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
productEquality, 
because_Cache, 
setElimination, 
rename, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
functionExtensionality, 
addEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
dependent_set_memberEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}L,L':(\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})  List.
    (((||L||  =  ||L'||)  \mwedge{}  (\mforall{}i:\mBbbN{}||L||.  bdd-diff(L[i];L'[i])))
    {}\mRightarrow{}  bdd-diff(reg-seq-list-add(L);reg-seq-list-add(L')))
Date html generated:
2017_10_02-PM-07_14_01
Last ObjectModification:
2017_07_28-AM-07_20_09
Theory : reals
Home
Index