Nuprl Lemma : rsub-rmin
∀[x,y,z:ℝ].  ((x - rmin(y;z)) = rmax(x - y;x - z))
Proof
Definitions occuring in Statement : 
rmin: rmin(x;y)
, 
rmax: rmax(x;y)
, 
rsub: x - y
, 
req: x = y
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
not: ¬A
, 
top: Top
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rmul_preserves_req, 
rsub_wf, 
rmin_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
req_inversion, 
req_witness, 
req_wf, 
rmax_wf, 
req-implies-req, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rmul_wf, 
real_wf, 
rminus_wf, 
radd_wf, 
req_functionality, 
req_transitivity, 
itermMinus_wf, 
real_term_value_minus_lemma, 
rminus_functionality, 
rmax_functionality, 
itermAdd_wf, 
real_term_value_add_lemma, 
rmin_functionality, 
radd_comm, 
req_weakening, 
radd-rmin, 
rminus-rmax
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
minusEquality, 
natural_numberEquality, 
because_Cache, 
independent_isectElimination, 
inlFormation, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
computeAll, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[x,y,z:\mBbbR{}].    ((x  -  rmin(y;z))  =  rmax(x  -  y;x  -  z))
Date html generated:
2017_10_03-AM-08_36_33
Last ObjectModification:
2017_07_28-AM-07_29_32
Theory : reals
Home
Index