Nuprl Lemma : rsub-rmin

[x,y,z:ℝ].  ((x rmin(y;z)) rmax(x y;x z))


Proof




Definitions occuring in Statement :  rmin: rmin(x;y) rmax: rmax(x;y) rsub: y req: y real: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rneq: x ≠ y or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: uiff: uiff(P;Q) guard: {T} itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  rmul_preserves_req rsub_wf rmin_wf int-to-real_wf rless-int rless_wf req_inversion req_witness req_wf rmax_wf req-implies-req real_term_polynomial itermSubtract_wf itermMultiply_wf itermVar_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rmul_wf real_wf rminus_wf radd_wf req_functionality req_transitivity itermMinus_wf real_term_value_minus_lemma rminus_functionality rmax_functionality itermAdd_wf real_term_value_add_lemma rmin_functionality radd_comm req_weakening radd-rmin rminus-rmax
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis minusEquality natural_numberEquality because_Cache independent_isectElimination inlFormation dependent_functionElimination productElimination independent_functionElimination sqequalRule independent_pairFormation imageMemberEquality baseClosed computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[x,y,z:\mBbbR{}].    ((x  -  rmin(y;z))  =  rmax(x  -  y;x  -  z))



Date html generated: 2017_10_03-AM-08_36_33
Last ObjectModification: 2017_07_28-AM-07_29_32

Theory : reals


Home Index