Nuprl Lemma : seq-append0

[n:ℕ]. ∀[s,t:Top].  (seq-append(n;0;s;t) seq-normalize(n;s))


Proof




Definitions occuring in Statement :  seq-normalize: seq-normalize(n;s) seq-append: seq-append(n;m;s1;s2) nat: uall: [x:A]. B[x] top: Top natural_number: $n sqequal: t
Definitions unfolded in proof :  seq-normalize: seq-normalize(n;s) seq-append: seq-append(n;m;s1;s2) uall: [x:A]. B[x] member: t ∈ T implies:  Q and: P ∧ Q cand: c∧ B prop: all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False subtract: m subtype_rel: A ⊆B le: A ≤ B bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  top_wf nat_wf less_than_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int not-lt-2 less-iff-le condition-implies-le minus-add base_wf minus-one-mul add-swap minus-one-mul-top add-commutes add-associates zero-add add_functionality_wrt_le le-add-cancel eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot equal-wf-base less_sqequal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut thin sqequalHypSubstitution hypothesis sqequalAxiom extract_by_obid isect_memberEquality isectElimination hypothesisEquality because_Cache baseApply closedConclusion baseClosed lambdaFormation productElimination independent_pairFormation addEquality natural_numberEquality unionElimination equalityElimination independent_isectElimination equalityTransitivity equalitySymmetry lessCases voidElimination voidEquality imageMemberEquality imageElimination independent_functionElimination dependent_functionElimination applyEquality lambdaEquality intEquality minusEquality dependent_pairFormation promote_hyp instantiate cumulativity impliesFunctionality productEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[s,t:Top].    (seq-append(n;0;s;t)  \msim{}  seq-normalize(n;s))



Date html generated: 2017_04_14-AM-07_27_07
Last ObjectModification: 2017_02_27-PM-02_56_22

Theory : bar-induction


Home Index