Nuprl Lemma : pcw-pp-barred_wf0
∀[P:Type]. ∀[A:P ⟶ Type]. ∀[B:p:P ⟶ A[p] ⟶ Type]. ∀[C:p:P ⟶ a:A[p] ⟶ B[p;a] ⟶ P].
∀[pp:n:ℕ × (ℕn ⟶ pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))].
  (Barred(pp) ∈ ℙ)
Proof
Definitions occuring in Statement : 
pcw-pp-barred: Barred(pp), 
pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]), 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2;s3], 
so_apply: x[s1;s2], 
so_apply: x[s], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
pcw-pp-barred: Barred(pp), 
prop: ℙ, 
and: P ∧ Q, 
nat: ℕ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
false: False, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
subtract: n - m, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]), 
spreadn: spread3, 
ext-family: F ≡ G, 
ext-eq: A ≡ B, 
pi1: fst(t)
Lemmas referenced : 
less_than_wf, 
subtract_wf, 
decidable__le, 
false_wf, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
decidable__lt, 
not-lt-2, 
add-mul-special, 
zero-mul, 
le-add-cancel-alt, 
lelt_wf, 
pcw-step_wf, 
param-co-W-ext, 
assert_wf, 
isr_wf, 
unit_wf2, 
equal_wf, 
nat_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productElimination, 
thin, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
applyEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
dependent_functionElimination, 
hypothesisEquality, 
unionElimination, 
lambdaFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
addEquality, 
minusEquality, 
cumulativity, 
lambdaEquality, 
functionExtensionality, 
hypothesis_subsumption, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
functionEquality, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[P:Type].  \mforall{}[A:P  {}\mrightarrow{}  Type].  \mforall{}[B:p:P  {}\mrightarrow{}  A[p]  {}\mrightarrow{}  Type].  \mforall{}[C:p:P  {}\mrightarrow{}  a:A[p]  {}\mrightarrow{}  B[p;a]  {}\mrightarrow{}  P].
\mforall{}[pp:n:\mBbbN{}  \mtimes{}  (\mBbbN{}n  {}\mrightarrow{}  pcw-step(P;p.A[p];p,a.B[p;a];p,a,b.C[p;a;b]))].
    (Barred(pp)  \mmember{}  \mBbbP{})
Date html generated:
2017_04_14-AM-07_42_04
Last ObjectModification:
2017_02_27-PM-03_13_52
Theory : co-recursion
Home
Index