Nuprl Lemma : baire2cantor2baire

a:ℕ ⟶ ℕ(init0(a)  increasing-sequence(a)  (cantor2baire(baire2cantor(a)) a ∈ (ℕ ⟶ ℕ)))


Proof




Definitions occuring in Statement :  init0: init0(a) cantor2baire: cantor2baire(a) baire2cantor: baire2cantor(a) increasing-sequence: increasing-sequence(a) nat: all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  increasing-sequence: increasing-sequence(a) rev_implies:  Q iff: ⇐⇒ Q squash: T true: True label: ...$L... t nequal: a ≠ b ∈  baire2cantor: baire2cantor(a) assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff guard: {T} ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 subtype_rel: A ⊆B init0: init0(a) less_than': less_than'(a;b) le: A ≤ B cantor2baire-aux: cantor2baire-aux(a;n) cantor2baire: cantor2baire(a) or: P ∨ Q decidable: Dec(P) prop: and: P ∧ Q top: Top not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  false: False nat: member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  nat-pred-as-sub iff_weakening_equal ifthenelse_wf true_wf squash_wf add_nat_wf int_term_value_add_lemma itermAdd_wf btrue_wf bfalse_wf nat-pred_wf subtract-add-cancel neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf eqff_to_assert int_formula_prop_eq_lemma intformeq_wf decidable__equal_int assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf primrec-unroll le_wf false_wf primrec0_lemma init0_wf increasing-sequence_wf nat_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  baseClosed imageMemberEquality universeEquality imageElimination addEquality cumulativity instantiate promote_hyp applyLambdaEquality because_Cache productElimination equalityTransitivity equalityElimination equalitySymmetry levelHypothesis addLevel dependent_set_memberEquality functionEquality applyEquality unionElimination axiomEquality independent_functionElimination computeAll independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality intWeakElimination rename setElimination hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction functionExtensionality cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  (init0(a)  {}\mRightarrow{}  increasing-sequence(a)  {}\mRightarrow{}  (cantor2baire(baire2cantor(a))  =  a))



Date html generated: 2017_04_21-AM-11_22_42
Last ObjectModification: 2017_04_20-PM-03_57_46

Theory : continuity


Home Index