Nuprl Lemma : kripke2b-seq_wf

[a:ℕ ⟶ ℕ]. ∀[x:ℕ]. ∀[F:∀b:{b:ℕ ⟶ ℕb ∈ (ℕx ⟶ ℕ)} . ∃n:ℕ((b n) ≥ ((a x) 1) )].
  (kripke2b-seq(a;x;F) ∈ (ℕ ⟶ ℕ) ⟶ ℕ)


Proof




Definitions occuring in Statement :  kripke2b-seq: kripke2b-seq(a;x;F) int_seg: {i..j-} nat: uall: [x:A]. B[x] ge: i ≥  all: x:A. B[x] exists: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) guard: {T} not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B exists: x:A. B[x] so_apply: x[s] prop: ge: i ≥  nat: subtype_rel: A ⊆B so_lambda: λ2x.t[x] uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 implies:  Q all: x:A. B[x] kripke2b-seq: kripke2b-seq(a;x;F) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  eq-finite-seqs-implies-eq-upto subtype_rel_self int_seg_subtype_nat subtype_rel_dep_function int_seg_wf all_wf assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert equal_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt add-is-int-iff decidable__le nat_properties le_wf false_wf add_nat_wf nat_wf exists_wf ge_wf pi1_wf min-inc-seq_wf eqtt_to_assert bool_wf eq-finite-seqs_wf
Rules used in proof :  functionEquality setEquality axiomEquality cumulativity instantiate independent_functionElimination computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation baseClosed closedConclusion baseApply promote_hyp pointwiseFunctionality dependent_functionElimination applyLambdaEquality equalitySymmetry equalityTransitivity independent_pairFormation dependent_set_memberEquality natural_numberEquality addEquality rename setElimination independent_isectElimination productElimination equalityElimination unionElimination lambdaFormation hypothesis because_Cache hypothesisEquality applyEquality functionExtensionality thin isectElimination sqequalHypSubstitution extract_by_obid lambdaEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[x:\mBbbN{}].  \mforall{}[F:\mforall{}b:\{b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}|  a  =  b\}  .  \mexists{}n:\mBbbN{}.  ((b  n)  \mgeq{}  ((a  x)  +  1)  )].
    (kripke2b-seq(a;x;F)  \mmember{}  (\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{})



Date html generated: 2017_04_20-AM-07_37_24
Last ObjectModification: 2017_04_19-PM-03_34_36

Theory : continuity


Home Index