Nuprl Lemma : eq-finite-seqs-implies-eq-upto

a,b:ℕ ⟶ ℕ. ∀x:ℕ.  ((↑eq-finite-seqs(a;b;x))  (a b ∈ (ℕx ⟶ ℕ)))


Proof




Definitions occuring in Statement :  eq-finite-seqs: eq-finite-seqs(a;b;x) int_seg: {i..j-} nat: assert: b all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T nat: false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q lelt: i ≤ j < k int_seg: {i..j-} guard: {T} true: True band: p ∧b q less_than': less_than'(a;b) le: A ≤ B subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q bnot: ¬bb sq_type: SQType(T) bfalse: ff assert: b ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 eq-finite-seqs: eq-finite-seqs(a;b;x) so_apply: x[s] so_lambda: λ2x.t[x]
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than istype-assert eq-finite-seqs_wf decidable__le intformnot_wf int_formula_prop_not_lemma istype-le subtract-1-ge-0 istype-nat int_seg_wf int_seg_properties bfalse_wf istype-false int_seg_subtype_nat eq_int_wf band_wf bool_cases btrue_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf primrec_wf less_than_wf assert_wf iff_weakening_uiff assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_lt_int eqtt_to_assert lt_int_wf primrec-unroll decidable__equal_int equal-wf-base le_wf set_subtype_base int_subtype_base int_formula_prop_eq_lemma intformeq_wf iff_transitivity assert_of_band assert_of_eq_int decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  axiomEquality Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :dependent_set_memberEquality_alt,  unionElimination Error :functionIsType,  productElimination Error :functionExtensionality_alt,  Error :equalityIstype,  applyEquality because_Cache cumulativity instantiate promote_hyp Error :equalityIsType1,  equalitySymmetry equalityTransitivity equalityElimination productEquality sqequalBase closedConclusion Error :productIsType,  intEquality applyLambdaEquality

Latex:
\mforall{}a,b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}x:\mBbbN{}.    ((\muparrow{}eq-finite-seqs(a;b;x))  {}\mRightarrow{}  (a  =  b))



Date html generated: 2019_06_20-PM-03_07_24
Last ObjectModification: 2019_01_02-PM-00_36_10

Theory : continuity


Home Index