Nuprl Lemma : eq-finite-seqs-implies-eq-upto
∀a,b:ℕ ⟶ ℕ. ∀x:ℕ.  ((↑eq-finite-seqs(a;b;x)) 
⇒ (a = b ∈ (ℕx ⟶ ℕ)))
Proof
Definitions occuring in Statement : 
eq-finite-seqs: eq-finite-seqs(a;b;x)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
guard: {T}
, 
true: True
, 
band: p ∧b q
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
eq-finite-seqs: eq-finite-seqs(a;b;x)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
istype-assert, 
eq-finite-seqs_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
subtract-1-ge-0, 
istype-nat, 
int_seg_wf, 
int_seg_properties, 
bfalse_wf, 
istype-false, 
int_seg_subtype_nat, 
eq_int_wf, 
band_wf, 
bool_cases, 
btrue_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
primrec_wf, 
less_than_wf, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
primrec-unroll, 
decidable__equal_int, 
equal-wf-base, 
le_wf, 
set_subtype_base, 
int_subtype_base, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
iff_transitivity, 
assert_of_band, 
assert_of_eq_int, 
decidable__lt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
Error :dependent_set_memberEquality_alt, 
unionElimination, 
Error :functionIsType, 
productElimination, 
Error :functionExtensionality_alt, 
Error :equalityIstype, 
applyEquality, 
because_Cache, 
cumulativity, 
instantiate, 
promote_hyp, 
Error :equalityIsType1, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
productEquality, 
sqequalBase, 
closedConclusion, 
Error :productIsType, 
intEquality, 
applyLambdaEquality
Latex:
\mforall{}a,b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}x:\mBbbN{}.    ((\muparrow{}eq-finite-seqs(a;b;x))  {}\mRightarrow{}  (a  =  b))
Date html generated:
2019_06_20-PM-03_07_24
Last ObjectModification:
2019_01_02-PM-00_36_10
Theory : continuity
Home
Index