Nuprl Lemma : strong-continuity2-implies-uniform-continuity-ext
∀F:(ℕ ⟶ 𝔹) ⟶ 𝔹. ⇃(∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f = g ∈ (ℕn ⟶ 𝔹)) 
⇒ F f = F g))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
ifthenelse: if b then t else f fi 
, 
compose: f o g
, 
pi1: fst(t)
, 
strong-continuity-test: strong-continuity-test(M;n;f;b)
, 
isl: isl(x)
, 
lt_int: i <z j
, 
let: let, 
strong-continuity2-implies-uniform-continuity, 
uniform-continuity-from-fan-ext, 
implies-quotient-true2, 
trivial-quotient-true, 
strong-continuity2-no-inner-squash-cantor4, 
implies-quotient-true, 
strong-continuity2-half-squash-surject-biject, 
retraction-nat-nsub, 
surject-nat-bool, 
biject-bool-nsub2, 
strong-continuity2_biject_retract-ext, 
bool_cases_sqequal, 
any: any x
, 
decidable__int_equal, 
strong-continuity2_functionality_surject, 
strong-continuity2-half-squash, 
strong-continuity2-iff-3, 
strong-continuity3_functionality_surject, 
basic-implies-strong-continuity2-ext, 
strong-continuity2-implies-3, 
surject-inverse, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
squash: ↓T
, 
btrue: tt
, 
bfalse: ff
Lemmas referenced : 
strong-continuity2-implies-uniform-continuity, 
lifting-strict-decide, 
istype-void, 
strict4-spread, 
strict4-decide, 
has-value_wf_base, 
is-exception_wf, 
lifting-strict-callbyvalue, 
lifting-strict-int_eq, 
lifting-strict-isint, 
value-type-has-value, 
int-value-type, 
istype-base, 
lifting-strict-less, 
uniform-continuity-from-fan-ext, 
implies-quotient-true2, 
trivial-quotient-true, 
strong-continuity2-no-inner-squash-cantor4, 
implies-quotient-true, 
strong-continuity2-half-squash-surject-biject, 
retraction-nat-nsub, 
surject-nat-bool, 
biject-bool-nsub2, 
strong-continuity2_biject_retract-ext, 
bool_cases_sqequal, 
decidable__int_equal, 
strong-continuity2_functionality_surject, 
strong-continuity2-half-squash, 
strong-continuity2-iff-3, 
strong-continuity3_functionality_surject, 
basic-implies-strong-continuity2-ext, 
strong-continuity2-implies-3, 
surject-inverse
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
sqequalSqle, 
divergentSqle, 
callbyvalueDecide, 
hypothesisEquality, 
unionElimination, 
sqleReflexivity, 
Error :equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
decideExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
baseApply, 
closedConclusion, 
independent_pairFormation, 
callbyvalueIntEq, 
productElimination, 
intEquality, 
Error :universeIsType, 
int_eqExceptionCases, 
Error :inrFormation_alt, 
imageMemberEquality, 
imageElimination, 
Error :inlFormation_alt, 
because_Cache
Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbB{}.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  F  f  =  F  g))
Date html generated:
2019_06_20-PM-02_52_46
Last ObjectModification:
2019_03_12-PM-04_21_49
Theory : continuity
Home
Index