Nuprl Lemma : div_absval_bound
∀[M:ℕ+]. ∀[z:ℤ]. ∀[n:ℕ].  |z ÷ M| ≤ n supposing |z| ≤ (n * M)
Proof
Definitions occuring in Statement : 
absval: |i|
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
divide: n ÷ m
, 
multiply: n * m
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
ge: i ≥ j 
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
less_than': less_than'(a;b)
, 
absval: |i|
, 
nequal: a ≠ b ∈ T 
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
int_lower: {...i}
, 
gt: i > j
Lemmas referenced : 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
nat_properties, 
nat_plus_properties, 
decidable__le, 
absval_wf, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
itermConstant_wf, 
itermMultiply_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_wf, 
absval_le_zero, 
zero-div-rem, 
nat_plus_inc_int_nzero, 
istype-false, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
mul_preserves_le, 
nat_plus_subtype_nat, 
le_witness_for_triv, 
istype-le, 
istype-nat, 
nat_plus_wf, 
mul_cancel_in_le, 
intformless_wf, 
int_formula_prop_less_lemma, 
equal_wf, 
absval_mul, 
iff_weakening_equal, 
absval_pos, 
div_rem_sum, 
div_rem_sum2, 
rem_bounds_1, 
absval_unfold, 
subtract_wf, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
istype-less_than, 
itermMinus_wf, 
int_term_value_minus_lemma, 
rem_bounds_2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
because_Cache, 
natural_numberEquality, 
hypothesis, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
hypothesisEquality, 
setElimination, 
rename, 
applyEquality, 
sqequalRule, 
productElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :universeIsType, 
Error :lambdaFormation_alt, 
minusEquality, 
Error :inhabitedIsType, 
multiplyEquality, 
Error :isectIsTypeImplies, 
divideEquality, 
Error :equalityIstype, 
baseClosed, 
sqequalBase, 
imageElimination, 
imageMemberEquality, 
Error :dependent_set_memberEquality_alt, 
remainderEquality, 
equalityElimination, 
lessCases, 
axiomSqEquality, 
closedConclusion, 
promote_hyp
Latex:
\mforall{}[M:\mBbbN{}\msupplus{}].  \mforall{}[z:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    |z  \mdiv{}  M|  \mleq{}  n  supposing  |z|  \mleq{}  (n  *  M)
Date html generated:
2019_06_20-PM-01_18_54
Last ObjectModification:
2019_02_12-PM-02_04_40
Theory : int_2
Home
Index