Nuprl Lemma : div_absval_bound

[M:ℕ+]. ∀[z:ℤ]. ∀[n:ℕ].  |z ÷ M| ≤ supposing |z| ≤ (n M)


Proof




Definitions occuring in Statement :  absval: |i| nat_plus: + nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B divide: n ÷ m multiply: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) implies:  Q guard: {T} nat: nat_plus: + ge: i ≥  subtype_rel: A ⊆B le: A ≤ B and: P ∧ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: uiff: uiff(P;Q) less_than': less_than'(a;b) absval: |i| nequal: a ≠ b ∈  squash: T true: True iff: ⇐⇒ Q rev_implies:  Q less_than: a < b bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b int_lower: {...i} gt: i > j
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base nat_properties nat_plus_properties decidable__le absval_wf full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf itermConstant_wf itermMultiply_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_wf absval_le_zero zero-div-rem nat_plus_inc_int_nzero istype-false intformeq_wf int_formula_prop_eq_lemma mul_preserves_le nat_plus_subtype_nat le_witness_for_triv istype-le istype-nat nat_plus_wf mul_cancel_in_le intformless_wf int_formula_prop_less_lemma equal_wf absval_mul iff_weakening_equal absval_pos div_rem_sum div_rem_sum2 rem_bounds_1 absval_unfold subtract_wf lt_int_wf eqtt_to_assert assert_of_lt_int istype-top itermSubtract_wf int_term_value_subtract_lemma eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-less_than itermMinus_wf int_term_value_minus_lemma rem_bounds_2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache natural_numberEquality hypothesis unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination independent_functionElimination equalityTransitivity equalitySymmetry hypothesisEquality setElimination rename applyEquality sqequalRule productElimination approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  Error :lambdaFormation_alt,  minusEquality Error :inhabitedIsType,  multiplyEquality Error :isectIsTypeImplies,  divideEquality Error :equalityIstype,  baseClosed sqequalBase imageElimination imageMemberEquality Error :dependent_set_memberEquality_alt,  remainderEquality equalityElimination lessCases axiomSqEquality closedConclusion promote_hyp

Latex:
\mforall{}[M:\mBbbN{}\msupplus{}].  \mforall{}[z:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    |z  \mdiv{}  M|  \mleq{}  n  supposing  |z|  \mleq{}  (n  *  M)



Date html generated: 2019_06_20-PM-01_18_54
Last ObjectModification: 2019_02_12-PM-02_04_40

Theory : int_2


Home Index