Nuprl Lemma : apply-alist-function
∀[T,A:Type]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[F:T ⟶ A]. ∀[L:T List].
  apply-alist(eq;map(λx.<x, F[x]>L);x) = (inl F[x]) ∈ (A?) supposing (x ∈ L)
Proof
Definitions occuring in Statement : 
apply-alist: apply-alist(eq;L;x), 
l_member: (x ∈ l), 
map: map(f;as), 
list: T List, 
deq: EqDecider(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
unit: Unit, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
pair: <a, b>, 
inl: inl x, 
union: left + right, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
prop: ℙ, 
so_apply: x[s], 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
apply-alist: apply-alist(eq;L;x), 
top: Top, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
pi1: fst(t), 
pi2: snd(t), 
deq: EqDecider(T), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
eqof: eqof(d), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
list_induction, 
isect_wf, 
l_member_wf, 
equal_wf, 
unit_wf2, 
apply-alist_wf, 
map_wf, 
list_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
nil_wf, 
btrue_neq_bfalse, 
cons_member, 
map_cons_lemma, 
list_ind_cons_lemma, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
and_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
cons_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
unionEquality, 
productEquality, 
independent_pairEquality, 
applyEquality, 
functionExtensionality, 
inlEquality, 
independent_functionElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
lambdaFormation, 
rename, 
dependent_functionElimination, 
productElimination, 
isect_memberEquality, 
voidEquality, 
setElimination, 
unionElimination, 
equalityElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T,A:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[F:T  {}\mrightarrow{}  A].  \mforall{}[L:T  List].
    apply-alist(eq;map(\mlambda{}x.<x,  F[x]>L);x)  =  (inl  F[x])  supposing  (x  \mmember{}  L)
Date html generated:
2017_04_14-AM-08_46_44
Last ObjectModification:
2017_02_27-PM-03_33_38
Theory : list_0
Home
Index