Nuprl Lemma : insert-not-nil

[T:Type]. ∀[eq:EqDecider(T)]. ∀[a:T]. ∀[L:T List].  (insert(a;L) [] ∈ (T List)))


Proof




Definitions occuring in Statement :  insert: insert(a;L) nil: [] list: List deq: EqDecider(T) uall: [x:A]. B[x] not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False insert: insert(a;L) prop: has-value: (a)↓ uimplies: supposing a and: P ∧ Q all: x:A. B[x] top: Top or: P ∨ Q sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) iff: ⇐⇒ Q ifthenelse: if then else fi  btrue: tt rev_implies:  Q bfalse: ff
Lemmas referenced :  equal-wf-T-base list_wf insert_wf deq_wf value-type-has-value list-value-type eval_list_wf deq-member_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse and_wf equal_wf null_wf btrue_neq_bfalse assert_wf bnot_wf not_wf l_member_wf null_cons_lemma bfalse_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert-deq-member eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution because_Cache hypothesis independent_functionElimination voidElimination extract_by_obid isectElimination cumulativity hypothesisEquality baseClosed sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality universeEquality callbyvalueReduce independent_isectElimination equalityTransitivity equalitySymmetry dependent_set_memberEquality independent_pairFormation applyLambdaEquality setElimination rename productElimination voidEquality unionElimination instantiate impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[a:T].  \mforall{}[L:T  List].    (\mneg{}(insert(a;L)  =  []))



Date html generated: 2017_04_14-AM-08_53_56
Last ObjectModification: 2017_02_27-PM-03_38_42

Theory : list_0


Home Index