Nuprl Lemma : bl-exists-append

[L1,L2,P:Top].  ((∃x∈L1 L2.P[x])_b (∃x∈L1.P[x])_b ∨b(∃x∈L2.P[x])_b)


Proof




Definitions occuring in Statement :  bl-exists: (∃x∈L.P[x])_b append: as bs bor: p ∨bq uall: [x:A]. B[x] top: Top so_apply: x[s] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bl-exists: (∃x∈L.P[x])_b top: Top all: x:A. B[x] implies:  Q reduce: reduce(f;k;as) list_ind: list_ind nat: false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A and: P ∧ Q prop: bor: p ∨bq ifthenelse: if then else fi  decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b compose: g so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] strict4: strict4(F) has-value: (a)↓ squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  reduce-append nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf top_wf fun_exp0_lemma strictness-apply bottom-sqle decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma fun_exp_unroll le_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int strictness-decide lifting-strict-callbyvalue has-value_wf_base base_wf is-exception_wf lifting-strict-ispair lifting-strict-spread lifting-strict-decide lifting-strict-isaxiom bor_assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesisEquality hypothesis because_Cache lambdaFormation sqequalSqle fixpointLeast setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination independent_pairFormation computeAll independent_functionElimination axiomSqleEquality unionElimination dependent_set_memberEquality equalityElimination equalityTransitivity equalitySymmetry productElimination promote_hyp instantiate cumulativity sqequalAxiom baseClosed callbyvalueDecide unionEquality sqleReflexivity baseApply closedConclusion decideExceptionCases inrFormation imageMemberEquality imageElimination exceptionSqequal inlFormation sqleRule divergentSqle

Latex:
\mforall{}[L1,L2,P:Top].    ((\mexists{}x\mmember{}L1  @  L2.P[x])\_b  \msim{}  (\mexists{}x\mmember{}L1.P[x])\_b  \mvee{}\msubb{}(\mexists{}x\mmember{}L2.P[x])\_b)



Date html generated: 2017_04_17-AM-08_03_43
Last ObjectModification: 2017_02_27-PM-04_34_13

Theory : list_1


Home Index