Nuprl Lemma : last_l_interval
∀[T:Type]. ∀[l:T List]. ∀[i:ℕ||l||]. ∀[j:ℕi]. (last(l_interval(l;j;i)) = l[i - 1] ∈ T)
Proof
Definitions occuring in Statement :
l_interval: l_interval(l;j;i)
,
last: last(L)
,
select: L[n]
,
length: ||as||
,
list: T List
,
int_seg: {i..j-}
,
uall: ∀[x:A]. B[x]
,
subtract: n - m
,
natural_number: $n
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
last: last(L)
,
squash: ↓T
,
prop: ℙ
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
guard: {T}
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
top: Top
,
le: A ≤ B
,
less_than: a < b
,
true: True
,
subtype_rel: A ⊆r B
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
sq_type: SQType(T)
,
subtract: n - m
Lemmas referenced :
equal_wf,
squash_wf,
true_wf,
select_l_interval,
int_seg_properties,
length_wf,
decidable__lt,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformless_wf,
itermVar_wf,
itermAdd_wf,
itermConstant_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_add_lemma,
int_term_value_constant_lemma,
int_formula_prop_wf,
lelt_wf,
subtract_wf,
l_interval_wf,
le_wf,
length_l_interval,
iff_weakening_equal,
decidable__le,
intformle_wf,
itermSubtract_wf,
int_formula_prop_le_lemma,
int_term_value_subtract_lemma,
less_than_wf,
select_wf,
subtype_base_sq,
int_subtype_base,
int_seg_wf,
list_wf,
add-associates,
minus-one-mul,
add-swap,
add-mul-special,
add-commutes,
zero-mul,
add-zero
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
applyEquality,
thin,
lambdaEquality,
sqequalHypSubstitution,
imageElimination,
extract_by_obid,
isectElimination,
hypothesisEquality,
equalityTransitivity,
hypothesis,
equalitySymmetry,
because_Cache,
setElimination,
rename,
dependent_set_memberEquality,
productElimination,
independent_pairFormation,
natural_numberEquality,
cumulativity,
dependent_functionElimination,
addEquality,
unionElimination,
independent_isectElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
computeAll,
imageMemberEquality,
baseClosed,
independent_functionElimination,
universeEquality,
instantiate,
axiomEquality,
multiplyEquality,
minusEquality
Latex:
\mforall{}[T:Type]. \mforall{}[l:T List]. \mforall{}[i:\mBbbN{}||l||]. \mforall{}[j:\mBbbN{}i]. (last(l\_interval(l;j;i)) = l[i - 1])
Date html generated:
2017_04_17-AM-07_42_56
Last ObjectModification:
2017_02_27-PM-04_15_21
Theory : list_1
Home
Index