Nuprl Lemma : member-exists
∀[T:Type]. ∀L:T List. (∃x:T. (x ∈ L) 
⇐⇒ ¬(L = [] ∈ (T List)))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
cons: [a / b]
, 
top: Top
, 
guard: {T}
, 
nat: ℕ
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
true: True
, 
listp: A List+
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
listp-not-nil, 
list-cases, 
length_of_nil_lemma, 
nil_member, 
product_subtype_list, 
length_of_cons_lemma, 
length_wf_nat, 
nat_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
equal_wf, 
less_than_wf, 
length_wf, 
equal-wf-T-base, 
list_wf, 
exists_wf, 
l_member_wf, 
member_exists, 
nil_wf, 
cons_wf, 
cons_neq_nil, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
productElimination, 
independent_functionElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
isect_memberEquality, 
voidEquality, 
setElimination, 
rename, 
natural_numberEquality, 
addEquality, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
intEquality, 
because_Cache, 
minusEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
cumulativity, 
baseClosed, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  (\mexists{}x:T.  (x  \mmember{}  L)  \mLeftarrow{}{}\mRightarrow{}  \mneg{}(L  =  []))
Date html generated:
2017_04_17-AM-07_30_55
Last ObjectModification:
2017_02_27-PM-04_08_15
Theory : list_1
Home
Index