Nuprl Lemma : member-exists

[T:Type]. ∀L:T List. (∃x:T. (x ∈ L) ⇐⇒ ¬(L [] ∈ (T List)))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q not: ¬A false: False member: t ∈ T or: P ∨ Q exists: x:A. B[x] cons: [a b] top: Top guard: {T} nat: le: A ≤ B decidable: Dec(P) rev_implies:  Q prop: uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b) true: True listp: List+ so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  listp-not-nil list-cases length_of_nil_lemma nil_member product_subtype_list length_of_cons_lemma length_wf_nat nat_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel equal_wf less_than_wf length_wf equal-wf-T-base list_wf exists_wf l_member_wf member_exists nil_wf cons_wf cons_neq_nil not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis dependent_functionElimination unionElimination sqequalRule productElimination independent_functionElimination voidElimination promote_hyp hypothesis_subsumption isect_memberEquality voidEquality setElimination rename natural_numberEquality addEquality independent_isectElimination applyEquality lambdaEquality intEquality because_Cache minusEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality cumulativity baseClosed universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  (\mexists{}x:T.  (x  \mmember{}  L)  \mLeftarrow{}{}\mRightarrow{}  \mneg{}(L  =  []))



Date html generated: 2017_04_17-AM-07_30_55
Last ObjectModification: 2017_02_27-PM-04_08_15

Theory : list_1


Home Index