Nuprl Lemma : no_repeats-length-le-by-relation

[A,B:Type]. ∀[R:A ⟶ B ⟶ ℙ].
  ∀[as:A List]. ∀[bs:B List].  (||as|| ≤ ||bs||) supposing ((∀a∈as.(∃b∈bs. b)) and no_repeats(A;as)) 
  supposing ∀a1,a2:A. ∀b:B.  ((R a1 b)  (R a2 b)  (a1 a2 ∈ A))


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) no_repeats: no_repeats(T;l) length: ||as|| list: List uimplies: supposing a uall: [x:A]. B[x] prop: le: A ≤ B all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) exists: x:A. B[x] inject: Inj(A;B;f) all: x:A. B[x] implies:  Q int_seg: {i..j-} guard: {T} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: subtype_rel: A ⊆B ge: i ≥  so_lambda: λ2x.t[x] so_apply: x[s] nat: cand: c∧ B pi1: fst(t) no_repeats: no_repeats(T;l) less_than': less_than'(a;b) sq_type: SQType(T)
Lemmas referenced :  injection_le length_wf_nat select_wf int_seg_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma non_neg_length length_wf int_seg_wf set_subtype_base lelt_wf int_subtype_base inject_wf le_witness_for_triv l_all_wf l_exists_wf l_member_wf no_repeats_wf list_wf subtype_rel_self istype-universe istype-le istype-less_than nat_properties intformeq_wf int_formula_prop_eq_lemma squash_wf le_wf less_than_wf decidable__equal_int_seg int_seg_subtype_nat istype-false subtype_base_sq istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution sqequalRule hypothesis promote_hyp thin productElimination extract_by_obid isectElimination hypothesisEquality independent_isectElimination dependent_pairFormation_alt lambdaFormation_alt dependent_functionElimination setElimination rename because_Cache natural_numberEquality equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination unionElimination approximateComputation independent_functionElimination lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType applyEquality inhabitedIsType equalityIstype intEquality sqequalBase setIsType isectIsTypeImplies functionIsType instantiate universeEquality dependent_set_memberEquality_alt productIsType functionExtensionality hyp_replacement productEquality imageMemberEquality baseClosed cumulativity

Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}[as:A  List].  \mforall{}[bs:B  List].
        (||as||  \mleq{}  ||bs||)  supposing  ((\mforall{}a\mmember{}as.(\mexists{}b\mmember{}bs.  R  a  b))  and  no\_repeats(A;as)) 
    supposing  \mforall{}a1,a2:A.  \mforall{}b:B.    ((R  a1  b)  {}\mRightarrow{}  (R  a2  b)  {}\mRightarrow{}  (a1  =  a2))



Date html generated: 2020_05_19-PM-09_42_52
Last ObjectModification: 2019_10_23-PM-03_44_02

Theory : list_1


Home Index