Nuprl Lemma : decidable__rel_exp_finite

[T:Type]
  ((∀x,y:T.  Dec(x y ∈ T))
   (∀[R:T ⟶ T ⟶ ℙ]. (rel_finite(T;R)  (∀x,y:T.  Dec(x y))  (∀k:ℕ. ∀x,y:T.  Dec(x R^k y)))))


Proof




Definitions occuring in Statement :  rel_finite: rel_finite(T;R) rel_exp: R^n nat: decidable: Dec(P) uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] rel_exp: R^n eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt infix_ap: y member: t ∈ T prop: so_lambda: λ2x.t[x] nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_apply: x[s] iff: ⇐⇒ Q cand: c∧ B subtype_rel: A ⊆B rev_implies:  Q rel_finite: rel_finite(T;R) l_exists: (∃x∈L. P[x]) int_seg: {i..j-} guard: {T} lelt: i ≤ j < k less_than: a < b squash: T
Lemmas referenced :  all_wf decidable_wf infix_ap_wf rel_exp_wf decidable__le subtract_wf satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf set_wf less_than_wf primrec-wf2 nat_wf rel_finite_wf equal_wf intformeq_wf int_formula_prop_eq_lemma or_wf exists_wf equal-wf-base int_subtype_base rel_exp_iff iff_wf decidable_functionality decidable__l_exists decidable__and2 select_wf int_seg_properties length_wf decidable__lt not_wf l_exists_iff l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin sqequalRule hypothesis rename setElimination hypothesisEquality introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity lambdaEquality because_Cache instantiate universeEquality dependent_set_memberEquality dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll functionExtensionality applyEquality functionEquality productElimination productEquality baseClosed inlFormation addLevel impliesFunctionality independent_functionElimination imageElimination inrFormation setEquality

Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}]
                (rel\_finite(T;R)  {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  R  y))  {}\mRightarrow{}  (\mforall{}k:\mBbbN{}.  \mforall{}x,y:T.    Dec(x  rel\_exp(T;  R;  k)  y)))))



Date html generated: 2017_04_17-AM-09_26_33
Last ObjectModification: 2017_02_27-PM-05_28_04

Theory : relations2


Home Index