Nuprl Lemma : decidable__rel_exp_finite
∀[T:Type]
  ((∀x,y:T.  Dec(x = y ∈ T))
  
⇒ (∀[R:T ⟶ T ⟶ ℙ]. (rel_finite(T;R) 
⇒ (∀x,y:T.  Dec(x R y)) 
⇒ (∀k:ℕ. ∀x,y:T.  Dec(x R^k y)))))
Proof
Definitions occuring in Statement : 
rel_finite: rel_finite(T;R)
, 
rel_exp: R^n
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
rel_exp: R^n
, 
eq_int: (i =z j)
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
infix_ap: x f y
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
rel_finite: rel_finite(T;R)
, 
l_exists: (∃x∈L. P[x])
, 
int_seg: {i..j-}
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
all_wf, 
decidable_wf, 
infix_ap_wf, 
rel_exp_wf, 
decidable__le, 
subtract_wf, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
set_wf, 
less_than_wf, 
primrec-wf2, 
nat_wf, 
rel_finite_wf, 
equal_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
or_wf, 
exists_wf, 
equal-wf-base, 
int_subtype_base, 
rel_exp_iff, 
iff_wf, 
decidable_functionality, 
decidable__l_exists, 
decidable__and2, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__lt, 
not_wf, 
l_exists_iff, 
l_member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
sqequalRule, 
hypothesis, 
rename, 
setElimination, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
lambdaEquality, 
because_Cache, 
instantiate, 
universeEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
functionExtensionality, 
applyEquality, 
functionEquality, 
productElimination, 
productEquality, 
baseClosed, 
inlFormation, 
addLevel, 
impliesFunctionality, 
independent_functionElimination, 
imageElimination, 
inrFormation, 
setEquality
Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}]
                (rel\_finite(T;R)  {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  R  y))  {}\mRightarrow{}  (\mforall{}k:\mBbbN{}.  \mforall{}x,y:T.    Dec(x  rel\_exp(T;  R;  k)  y)))))
Date html generated:
2017_04_17-AM-09_26_33
Last ObjectModification:
2017_02_27-PM-05_28_04
Theory : relations2
Home
Index