Nuprl Lemma : decidable__rel_plus

[T:Type]
  ((∀x,y:T.  Dec(x y ∈ T))
   (∀[R:T ⟶ T ⟶ ℙ]. (SWellFounded(x y)  rel_finite(T;R)  (∀x,y:T.  Dec(x y))  (∀x,y:T.  Dec(x R+ y)))))


Proof




Definitions occuring in Statement :  strongwellfounded: SWellFounded(R[x; y]) rel_finite: rel_finite(T;R) rel_plus: R+ decidable: Dec(P) uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q strongwellfounded: SWellFounded(R[x; y]) exists: x:A. B[x] pi1: fst(t) prop: so_lambda: λ2y.t[x; y] infix_ap: y subtype_rel: A ⊆B so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] uimplies: supposing a nat_plus: + decidable: Dec(P) or: P ∨ Q nat: guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top and: P ∧ Q rel_plus: R+ iff: ⇐⇒ Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) rev_implies:  Q
Lemmas referenced :  less_than_wf rel_finite_wf decidable__rel_exp_finite decidable__exists_int_seg rel_plus_wf decidable_functionality infix_ap_wf int_seg_wf int_seg_subtype_nat_plus exists_wf false_wf int_seg_subtype_nat int_formula_prop_less_lemma intformless_wf decidable__lt nat_plus_wf nat_plus_subtype_nat rel_exp_wf int_formula_prop_wf int_term_value_add_lemma int_formula_prop_not_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma itermAdd_wf intformnot_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt le_wf nat_properties decidable__le nat_plus_properties equal_wf decidable_wf all_wf strongwellfounded_wf strongwellfounded_rel_exp
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation promote_hyp rename productElimination sqequalRule lambdaEquality applyEquality universeEquality functionEquality cumulativity independent_isectElimination setElimination dependent_functionElimination because_Cache unionElimination equalityTransitivity equalitySymmetry setEquality intEquality natural_numberEquality dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality introduction addEquality instantiate independent_functionElimination

Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}]
                (SWellFounded(x  R  y)
                {}\mRightarrow{}  rel\_finite(T;R)
                {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  R  y))
                {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  R\msupplus{}  y)))))



Date html generated: 2016_05_14-PM-03_52_29
Last ObjectModification: 2016_01_14-PM-11_11_07

Theory : relations2


Home Index