Nuprl Lemma : decidable__rel_plus
∀[T:Type]
  ((∀x,y:T.  Dec(x = y ∈ T))
  
⇒ (∀[R:T ⟶ T ⟶ ℙ]. (SWellFounded(x R y) 
⇒ rel_finite(T;R) 
⇒ (∀x,y:T.  Dec(x R y)) 
⇒ (∀x,y:T.  Dec(x R+ y)))))
Proof
Definitions occuring in Statement : 
strongwellfounded: SWellFounded(R[x; y])
, 
rel_finite: rel_finite(T;R)
, 
rel_plus: R+
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
strongwellfounded: SWellFounded(R[x; y])
, 
exists: ∃x:A. B[x]
, 
pi1: fst(t)
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat: ℕ
, 
guard: {T}
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
rel_plus: R+
, 
iff: P 
⇐⇒ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
less_than_wf, 
rel_finite_wf, 
decidable__rel_exp_finite, 
decidable__exists_int_seg, 
rel_plus_wf, 
decidable_functionality, 
infix_ap_wf, 
int_seg_wf, 
int_seg_subtype_nat_plus, 
exists_wf, 
false_wf, 
int_seg_subtype_nat, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
nat_plus_wf, 
nat_plus_subtype_nat, 
rel_exp_wf, 
int_formula_prop_wf, 
int_term_value_add_lemma, 
int_formula_prop_not_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
itermAdd_wf, 
intformnot_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
le_wf, 
nat_properties, 
decidable__le, 
nat_plus_properties, 
equal_wf, 
decidable_wf, 
all_wf, 
strongwellfounded_wf, 
strongwellfounded_rel_exp
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
promote_hyp, 
rename, 
productElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
universeEquality, 
functionEquality, 
cumulativity, 
independent_isectElimination, 
setElimination, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
intEquality, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
introduction, 
addEquality, 
instantiate, 
independent_functionElimination
Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}]
                (SWellFounded(x  R  y)
                {}\mRightarrow{}  rel\_finite(T;R)
                {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  R  y))
                {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(x  R\msupplus{}  y)))))
Date html generated:
2016_05_14-PM-03_52_29
Last ObjectModification:
2016_01_14-PM-11_11_07
Theory : relations2
Home
Index