Nuprl Lemma : strongwellfounded_rel_exp
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[swf:SWellFounded(x R y)]. ∀[n:ℕ+]. ∀[x,y:T].
  (((fst(swf)) x) + n) ≤ ((fst(swf)) y) supposing x R^n y
Proof
Definitions occuring in Statement : 
strongwellfounded: SWellFounded(R[x; y]), 
rel_exp: R^n, 
nat_plus: ℕ+, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
infix_ap: x f y, 
pi1: fst(t), 
le: A ≤ B, 
apply: f a, 
function: x:A ⟶ B[x], 
add: n + m, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
le: A ≤ B, 
and: P ∧ Q, 
infix_ap: x f y, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
prop: ℙ, 
so_apply: x[s], 
top: Top, 
not: ¬A, 
false: False, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
or: P ∨ Q, 
decidable: Dec(P), 
nat: ℕ, 
so_lambda: λ2x.t[x], 
implies: P ⇒ Q, 
nat_plus: ℕ+, 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
subtract: n - m, 
eq_int: (i =z j), 
rel_exp: R^n, 
all: ∀x:A. B[x], 
pi1: fst(t), 
exists: ∃x:A. B[x], 
strongwellfounded: SWellFounded(R[x; y]), 
squash: ↓T, 
less_than: a < b, 
btrue: tt, 
assert: ↑b, 
bnot: ¬bb, 
guard: {T}, 
sq_type: SQType(T), 
uiff: uiff(P;Q), 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
le_witness_for_triv, 
rel_exp_wf, 
nat_plus_subtype_nat, 
istype-universe, 
nat_plus_wf, 
strongwellfounded_wf, 
primrec-wf-nat-plus, 
nat_wf, 
le_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
infix_ap_wf, 
all_wf, 
nat_plus_properties, 
equal_wf, 
exists_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
less_than_wf, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
add-subtract-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productElimination, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
independent_isectElimination, 
Error :universeIsType, 
applyEquality, 
hypothesisEquality, 
sqequalRule, 
because_Cache, 
Error :inhabitedIsType, 
Error :lambdaEquality_alt, 
Error :functionIsType, 
universeEquality, 
independent_functionElimination, 
addEquality, 
functionExtensionality, 
computeAll, 
independent_pairFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
unionElimination, 
natural_numberEquality, 
dependent_functionElimination, 
dependent_set_memberEquality, 
instantiate, 
functionEquality, 
lambdaEquality, 
cumulativity, 
setElimination, 
lambdaFormation, 
rename, 
productEquality, 
imageElimination, 
applyLambdaEquality, 
hyp_replacement, 
promote_hyp, 
equalityElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[swf:SWellFounded(x  R  y)].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x,y:T].
    (((fst(swf))  x)  +  n)  \mleq{}  ((fst(swf))  y)  supposing  x  rel\_exp(T;  R;  n)  y
Date html generated:
2019_06_20-PM-02_01_50
Last ObjectModification:
2018_10_06-AM-11_23_54
Theory : relations2
Home
Index