Nuprl Lemma : strongwellfounded_rel_exp

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[swf:SWellFounded(x y)]. ∀[n:ℕ+]. ∀[x,y:T].
  (((fst(swf)) x) n) ≤ ((fst(swf)) y) supposing R^n y


Proof




Definitions occuring in Statement :  strongwellfounded: SWellFounded(R[x; y]) rel_exp: R^n nat_plus: + uimplies: supposing a uall: [x:A]. B[x] prop: infix_ap: y pi1: fst(t) le: A ≤ B apply: a function: x:A ⟶ B[x] add: m universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T le: A ≤ B and: P ∧ Q infix_ap: y subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop: so_apply: x[s] top: Top not: ¬A false: False satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) nat: so_lambda: λ2x.t[x] implies:  Q nat_plus: + bfalse: ff ifthenelse: if then else fi  subtract: m eq_int: (i =z j) rel_exp: R^n all: x:A. B[x] pi1: fst(t) exists: x:A. B[x] strongwellfounded: SWellFounded(R[x; y]) squash: T less_than: a < b btrue: tt assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 nequal: a ≠ b ∈ 
Lemmas referenced :  le_witness_for_triv rel_exp_wf nat_plus_subtype_nat istype-universe nat_plus_wf strongwellfounded_wf primrec-wf-nat-plus nat_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le infix_ap_wf all_wf nat_plus_properties equal_wf exists_wf int_term_value_add_lemma itermAdd_wf less_than_wf neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert int_formula_prop_eq_lemma intformeq_wf assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf add-subtract-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin productElimination equalityTransitivity hypothesis equalitySymmetry independent_isectElimination Error :universeIsType,  applyEquality hypothesisEquality sqequalRule because_Cache Error :inhabitedIsType,  Error :lambdaEquality_alt,  Error :functionIsType,  universeEquality independent_functionElimination addEquality functionExtensionality computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation unionElimination natural_numberEquality dependent_functionElimination dependent_set_memberEquality instantiate functionEquality lambdaEquality cumulativity setElimination lambdaFormation rename productEquality imageElimination applyLambdaEquality hyp_replacement promote_hyp equalityElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[swf:SWellFounded(x  R  y)].  \mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[x,y:T].
    (((fst(swf))  x)  +  n)  \mleq{}  ((fst(swf))  y)  supposing  x  rel\_exp(T;  R;  n)  y



Date html generated: 2019_06_20-PM-02_01_50
Last ObjectModification: 2018_10_06-AM-11_23_54

Theory : relations2


Home Index