Nuprl Lemma : select-tuple-tuple

[n:ℕ]. ∀[i:ℕn]. ∀[F:Top].  (tuple(n;i.F[i]).i F[i])


Proof




Definitions occuring in Statement :  select-tuple: x.n tuple: tuple(n;i.F[i]) int_seg: {i..j-} nat: uall: [x:A]. B[x] top: Top so_apply: x[s] natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b select-tuple: x.n nequal: a ≠ b ∈  pi1: fst(t) pi2: snd(t)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf top_wf int_seg_wf int_seg_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma tuple-decomp le_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_subtype_base decidable__lt lelt_wf subtract-add-cancel nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom because_Cache productElimination unionElimination dependent_set_memberEquality equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[i:\mBbbN{}n].  \mforall{}[F:Top].    (tuple(n;i.F[i]).i  \msim{}  F[i])



Date html generated: 2017_04_17-AM-09_29_37
Last ObjectModification: 2017_02_27-PM-05_30_01

Theory : tuples


Home Index