Nuprl Lemma : equal-count-bag-to-set
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)]. ∀[x,y:T].
  uiff((#x in bag-to-set(eq;bs)) = (#y in bag-to-set(eq;bs)) ∈ ℤ;x ↓∈ bs ⇐⇒ y ↓∈ bs)
Proof
Definitions occuring in Statement : 
bag-to-set: bag-to-set(eq;bs), 
bag-count: (#x in bs), 
bag-member: x ↓∈ bs, 
bag: bag(T), 
deq: EqDecider(T), 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
bag-member: x ↓∈ bs, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
rev_uimplies: rev_uimplies(P;Q), 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
less_than: a < b, 
le: A ≤ B
Lemmas referenced : 
bag-member-count, 
member-bag-to-set, 
bag-member_wf, 
equal_wf, 
bag-count_wf, 
bag-to-set_wf, 
nat_wf, 
iff_wf, 
bag_wf, 
deq_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
count-bag-to-set, 
intformless_wf, 
int_formula_prop_less_lemma
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_pairFormation, 
lambdaFormation, 
cumulativity, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
intEquality, 
applyEquality, 
setElimination, 
rename, 
because_Cache, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
universeEquality, 
independent_isectElimination, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
computeAll, 
equalityElimination, 
promote_hyp, 
instantiate, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].  \mforall{}[x,y:T].
    uiff((\#x  in  bag-to-set(eq;bs))  =  (\#y  in  bag-to-set(eq;bs));x  \mdownarrow{}\mmember{}  bs  \mLeftarrow{}{}\mRightarrow{}  y  \mdownarrow{}\mmember{}  bs)
Date html generated:
2018_05_21-PM-09_47_39
Last ObjectModification:
2017_07_26-PM-06_30_21
Theory : bags_2
Home
Index