Nuprl Lemma : equal-count-bag-to-set

[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)]. ∀[x,y:T].
  uiff((#x in bag-to-set(eq;bs)) (#y in bag-to-set(eq;bs)) ∈ ℤ;x ↓∈ bs ⇐⇒ y ↓∈ bs)


Proof




Definitions occuring in Statement :  bag-to-set: bag-to-set(eq;bs) bag-count: (#x in bs) bag-member: x ↓∈ bs bag: bag(T) deq: EqDecider(T) uiff: uiff(P;Q) uall: [x:A]. B[x] iff: ⇐⇒ Q int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a iff: ⇐⇒ Q implies:  Q prop: rev_implies:  Q bag-member: x ↓∈ bs squash: T subtype_rel: A ⊆B nat: rev_uimplies: rev_uimplies(P;Q) all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b less_than: a < b le: A ≤ B
Lemmas referenced :  bag-member-count member-bag-to-set bag-member_wf equal_wf bag-count_wf bag-to-set_wf nat_wf iff_wf bag_wf deq_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf count-bag-to-set intformless_wf int_formula_prop_less_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_pairFormation lambdaFormation cumulativity sqequalRule productElimination independent_pairEquality lambdaEquality dependent_functionElimination imageElimination imageMemberEquality baseClosed intEquality applyEquality setElimination rename because_Cache isect_memberEquality equalityTransitivity equalitySymmetry axiomEquality universeEquality independent_isectElimination natural_numberEquality unionElimination dependent_pairFormation int_eqEquality voidElimination voidEquality computeAll equalityElimination promote_hyp instantiate independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].  \mforall{}[x,y:T].
    uiff((\#x  in  bag-to-set(eq;bs))  =  (\#y  in  bag-to-set(eq;bs));x  \mdownarrow{}\mmember{}  bs  \mLeftarrow{}{}\mRightarrow{}  y  \mdownarrow{}\mmember{}  bs)



Date html generated: 2018_05_21-PM-09_47_39
Last ObjectModification: 2017_07_26-PM-06_30_21

Theory : bags_2


Home Index