Nuprl Lemma : sub-bag-remove-if

[T:Type]. ∀[bs:bag(T)].  ∀eq:EqDecider(T). ∀as:bag(T). ∀x:T.  (sub-bag(T;as;bs)  sub-bag(T;as x;bs))


Proof




Definitions occuring in Statement :  bag-remove: bs x sub-bag: sub-bag(T;as;bs) bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q sub-bag: sub-bag(T;as;bs) exists: x:A. B[x] member: t ∈ T decidable: Dec(P) or: P ∨ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a bag-remove: bs x top: Top deq: EqDecider(T) squash: T iff: ⇐⇒ Q and: P ∧ Q not: ¬A false: False rev_implies:  Q uiff: uiff(P;Q) eqof: eqof(d) true: True guard: {T}
Lemmas referenced :  decidable__assert bag-deq-member_wf sub-bag_wf deq_wf bag-append_wf bag-filter_wf eqof_wf subtype_rel_bag assert_wf bag-append-comm bag-append-assoc equal_wf bag_wf bnot_wf bag-remove_wf bag-filter-split squash_wf true_wf bool_wf iff_imp_equal_bool not_wf iff_transitivity iff_weakening_uiff assert_of_bnot safe-assert-deq iff_wf bag-remove-trivial assert-bag-deq-member bag-member_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination isectElimination cumulativity hypothesisEquality hypothesis unionElimination because_Cache dependent_pairFormation sqequalRule lambdaEquality applyEquality setEquality independent_isectElimination setElimination rename isect_memberEquality voidElimination voidEquality hyp_replacement equalitySymmetry applyLambdaEquality equalityTransitivity imageElimination functionEquality universeEquality independent_pairFormation independent_functionElimination addLevel impliesFunctionality levelHypothesis andLevelFunctionality impliesLevelFunctionality natural_numberEquality imageMemberEquality baseClosed equalityUniverse promote_hyp

Latex:
\mforall{}[T:Type].  \mforall{}[bs:bag(T)].
    \mforall{}eq:EqDecider(T).  \mforall{}as:bag(T).  \mforall{}x:T.    (sub-bag(T;as;bs)  {}\mRightarrow{}  sub-bag(T;as  -  x;bs))



Date html generated: 2018_05_21-PM-09_47_47
Last ObjectModification: 2017_07_26-PM-06_30_26

Theory : bags_2


Home Index