Nuprl Lemma : Wselect_wf

[A:Type]
  ∀[B:A ⟶ Type]. ∀[s:(a:A ⟶ (B[a]?)) List]. ∀[w:W-type(A; a.B[a])].  (Wselect(w;s) ∈ W-type(A; a.B[a])?) 
  supposing ∀x,y:A.  Dec(x y ∈ A)


Proof




Definitions occuring in Statement :  Wselect: Wselect(w;s) W-type: W-type(A; a.B[a]) list: List decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] unit: Unit member: t ∈ T function: x:A ⟶ B[x] union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  Wselect: Wselect(w;s) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B guard: {T} or: P ∨ Q W-select: W-select(w;s) ifthenelse: if then else fi  btrue: tt cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) bfalse: ff ext-eq: A ≡ B
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf W-type_wf equal-wf-T-base nat_wf colength_wf_list unit_wf2 less_than_transitivity1 less_than_irreflexivity list-cases null_nil_lemma reduce_tl_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int null_cons_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma W-type-ext subtype_rel_weakening list_wf all_wf decidable_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry cumulativity applyEquality functionExtensionality functionEquality unionEquality because_Cache unionElimination inlEquality promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination productEquality inrEquality universeEquality

Latex:
\mforall{}[A:Type]
    \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[s:(a:A  {}\mrightarrow{}  (B[a]?))  List].  \mforall{}[w:W-type(A;  a.B[a])].
        (Wselect(w;s)  \mmember{}  W-type(A;  a.B[a])?) 
    supposing  \mforall{}x,y:A.    Dec(x  =  y)



Date html generated: 2018_05_21-PM-10_18_38
Last ObjectModification: 2017_07_26-PM-06_36_42

Theory : bar!induction


Home Index