Nuprl Lemma : Rice-theorem-for-Type_1

F:Type ⟶ 𝔹
  ((∀X,Y:Type.  (X  Y))  (∀X,Y:Type.  (F Y ∨ (∃p:ℕ∞ ⟶ 𝔹((∀n:ℕ(¬↑(p n∞))) ∧ (↑(p ∞)))))))


Proof




Definitions occuring in Statement :  nat-inf-infinity: nat2inf: n∞ nat-inf: ℕ∞ equipollent: B nat: assert: b bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T decidable: Dec(P) or: P ∨ Q prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] guard: {T} exists: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff cand: c∧ B not: ¬A false: False uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) uimplies: supposing a bnot: ¬bb ifthenelse: if then else fi  squash: T true: True compose: g assert: b sq_type: SQType(T)
Lemmas referenced :  decidable__equal_bool exists_wf nat-inf_wf bool_wf all_wf nat_wf not_wf assert_wf nat2inf_wf nat-inf-infinity_wf equal_wf equipollent_wf nat-inf-attach bnot_wf assert_of_bnot assert_elim bfalse_wf and_wf btrue_neq_bfalse assert_functionality_wrt_uiff squash_wf true_wf compose_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin applyEquality functionExtensionality hypothesisEquality universeEquality cumulativity hypothesis unionElimination inlFormation isectElimination functionEquality sqequalRule lambdaEquality productEquality inrFormation instantiate productElimination independent_functionElimination equalityElimination equalityTransitivity equalitySymmetry dependent_pairFormation voidElimination independent_pairFormation independent_isectElimination addLevel levelHypothesis dependent_set_memberEquality applyLambdaEquality setElimination rename impliesFunctionality imageElimination natural_numberEquality imageMemberEquality baseClosed allFunctionality promote_hyp because_Cache

Latex:
\mforall{}F:Type  {}\mrightarrow{}  \mBbbB{}
    ((\mforall{}X,Y:Type.    (X  \msim{}  Y  {}\mRightarrow{}  F  X  =  F  Y))
    {}\mRightarrow{}  (\mforall{}X,Y:Type.    (F  X  =  F  Y  \mvee{}  (\mexists{}p:\mBbbN{}\minfty{}  {}\mrightarrow{}  \mBbbB{}.  ((\mforall{}n:\mBbbN{}.  (\mneg{}\muparrow{}(p  n\minfty{})))  \mwedge{}  (\muparrow{}(p  \minfty{})))))))



Date html generated: 2017_10_01-AM-08_29_37
Last ObjectModification: 2017_07_26-PM-04_24_06

Theory : basic


Home Index