Nuprl Lemma : Rice-theorem-for-Type_1
∀F:Type ⟶ 𝔹
  ((∀X,Y:Type.  (X ~ Y 
⇒ F X = F Y)) 
⇒ (∀X,Y:Type.  (F X = F Y ∨ (∃p:ℕ∞ ⟶ 𝔹. ((∀n:ℕ. (¬↑(p n∞))) ∧ (↑(p ∞)))))))
Proof
Definitions occuring in Statement : 
nat-inf-infinity: ∞
, 
nat2inf: n∞
, 
nat-inf: ℕ∞
, 
equipollent: A ~ B
, 
nat: ℕ
, 
assert: ↑b
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
, 
cand: A c∧ B
, 
not: ¬A
, 
false: False
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uimplies: b supposing a
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
squash: ↓T
, 
true: True
, 
compose: f o g
, 
assert: ↑b
, 
sq_type: SQType(T)
Lemmas referenced : 
decidable__equal_bool, 
exists_wf, 
nat-inf_wf, 
bool_wf, 
all_wf, 
nat_wf, 
not_wf, 
assert_wf, 
nat2inf_wf, 
nat-inf-infinity_wf, 
equal_wf, 
equipollent_wf, 
nat-inf-attach, 
bnot_wf, 
assert_of_bnot, 
assert_elim, 
bfalse_wf, 
and_wf, 
btrue_neq_bfalse, 
assert_functionality_wrt_uiff, 
squash_wf, 
true_wf, 
compose_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
universeEquality, 
cumulativity, 
hypothesis, 
unionElimination, 
inlFormation, 
isectElimination, 
functionEquality, 
sqequalRule, 
lambdaEquality, 
productEquality, 
inrFormation, 
instantiate, 
productElimination, 
independent_functionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_pairFormation, 
voidElimination, 
independent_pairFormation, 
independent_isectElimination, 
addLevel, 
levelHypothesis, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
impliesFunctionality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
allFunctionality, 
promote_hyp, 
because_Cache
Latex:
\mforall{}F:Type  {}\mrightarrow{}  \mBbbB{}
    ((\mforall{}X,Y:Type.    (X  \msim{}  Y  {}\mRightarrow{}  F  X  =  F  Y))
    {}\mRightarrow{}  (\mforall{}X,Y:Type.    (F  X  =  F  Y  \mvee{}  (\mexists{}p:\mBbbN{}\minfty{}  {}\mrightarrow{}  \mBbbB{}.  ((\mforall{}n:\mBbbN{}.  (\mneg{}\muparrow{}(p  n\minfty{})))  \mwedge{}  (\muparrow{}(p  \minfty{})))))))
Date html generated:
2017_10_01-AM-08_29_37
Last ObjectModification:
2017_07_26-PM-04_24_06
Theory : basic
Home
Index