Nuprl Lemma : awf_sum_wf

[n:ℕ]. ∀[s:awf(ℤ)].  (awf_sum(n;s) ∈ ℤ)


Proof




Definitions occuring in Statement :  awf_sum: awf_sum(n;s) awf: awf(T) nat: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: awf_sum: awf_sum(n;s) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b has-value: (a)↓ so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf awf_wf awf-subtype list_wf equal_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int value-type-has-value int-value-type list_accum_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry unionEquality unionElimination callbyvalueReduce sqleReflexivity equalityElimination productElimination because_Cache promote_hyp instantiate cumulativity addEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[s:awf(\mBbbZ{})].    (awf\_sum(n;s)  \mmember{}  \mBbbZ{})



Date html generated: 2018_05_21-PM-08_57_15
Last ObjectModification: 2017_07_26-PM-06_21_01

Theory : general


Home Index