Nuprl Lemma : combinations_aux_linear

[n:ℕ]. ∀[b,m:ℤ].  (combinations_aux(b;n;m) (b combinations_aux(1;n;m)) ∈ ℤ)


Proof




Definitions occuring in Statement :  combinations_aux: combinations_aux(b;n;m) nat: uall: [x:A]. B[x] multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: combinations_aux: combinations_aux(b;n;m) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B has-value: (a)↓ bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff iff: ⇐⇒ Q rev_implies:  Q true: True squash: T guard: {T}
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf decidable__equal_int intformeq_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_mul_lemma eq_int_wf bool_wf equal-wf-base int_subtype_base assert_wf bnot_wf not_wf value-type-has-value int-value-type uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot equal_wf combinations_aux_wf_int le_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality callbyvalueReduce sqleReflexivity unionElimination because_Cache baseApply closedConclusion baseClosed applyEquality equalityTransitivity equalitySymmetry multiplyEquality equalityElimination productElimination impliesFunctionality dependent_set_memberEquality imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[b,m:\mBbbZ{}].    (combinations\_aux(b;n;m)  =  (b  *  combinations\_aux(1;n;m)))



Date html generated: 2018_05_21-PM-08_09_05
Last ObjectModification: 2017_07_26-PM-05_44_44

Theory : general


Home Index