Nuprl Lemma : coprime-exp1

a,b:ℤ.  (CoPrime(a,b)  (∀n:ℕCoPrime(a,b^n)))


Proof




Definitions occuring in Statement :  coprime: CoPrime(a,b) exp: i^n nat: all: x:A. B[x] implies:  Q int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T top: Top prop: uall: [x:A]. B[x] nat: decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q exp: i^n bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  coprime_prod neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf primrec-unroll exists_wf equal_wf int_term_value_mul_lemma int_term_value_add_lemma int_formula_prop_eq_lemma itermMultiply_wf itermAdd_wf intformeq_wf decidable__equal_int coprime_bezout_id nat_wf primrec-wf2 less_than_wf set_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt subtract_wf decidable__le exp_wf2 coprime_wf exp0_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis rename setElimination isectElimination hypothesisEquality dependent_set_memberEquality because_Cache natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality independent_pairFormation computeAll introduction productElimination independent_functionElimination addEquality multiplyEquality equalityElimination equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity equalityEquality

Latex:
\mforall{}a,b:\mBbbZ{}.    (CoPrime(a,b)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  CoPrime(a,b\^{}n)))



Date html generated: 2016_05_15-PM-04_49_34
Last ObjectModification: 2016_01_16-AM-11_26_31

Theory : general


Home Index