Nuprl Lemma : equipollent-primes
ℕ ~ {p:ℕ| prime(p)} 
This theorem is one of freek's list of 100 theorems
Proof
Definitions occuring in Statement : 
prime: prime(a)
, 
equipollent: A ~ B
, 
nat: ℕ
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
int_upper: {i...}
, 
subtype_rel: A ⊆r B
, 
ge: i ≥ j 
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat_plus: ℕ+
, 
guard: {T}
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
sq_exists: ∃x:{A| B[x]}
, 
cand: A c∧ B
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
divides: b | a
, 
mul-list: Π(ns) 
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
prime: prime(a)
, 
assoced: a ~ b
Lemmas referenced : 
one_divs_any, 
int_term_value_subtract_lemma, 
int_term_value_mul_lemma, 
itermSubtract_wf, 
itermMultiply_wf, 
decidable__equal_int, 
int_upper_properties, 
subtract_wf, 
nat_plus_wf, 
equal_wf, 
subtype_rel_list, 
mul-list_wf, 
lelt_wf, 
decidable__lt, 
divides-fact, 
sq_stable__le, 
sq_stable_from_decidable, 
false_wf, 
int_upper_subtype_nat, 
subtype_rel_set, 
product_subtype_list, 
and_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
mul_list_nil_lemma, 
list-cases, 
int_upper_wf, 
set_wf, 
sq_stable__equal, 
int_formula_prop_wf, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_and_lemma, 
itermAdd_wf, 
intformle_wf, 
intformnot_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
less_than_wf, 
nat_plus_properties, 
le_wf, 
decidable__le, 
nat_properties, 
fact_wf, 
prime-factors, 
decidable__prime, 
nat_wf, 
prime_wf, 
equipollent-nat-decidable-subset
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
lambdaFormation, 
because_Cache, 
dependent_set_memberEquality, 
addEquality, 
natural_numberEquality, 
applyEquality, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
intEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
introduction, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
multiplyEquality
Latex:
\mBbbN{}  \msim{}  \{p:\mBbbN{}|  prime(p)\} 
Date html generated:
2016_05_15-PM-05_28_44
Last ObjectModification:
2016_01_16-PM-00_31_20
Theory : general
Home
Index