Nuprl Lemma : equipollent-primes

ℕ {p:ℕprime(p)} 


This theorem is one of freek's list of 100 theorems



Proof




Definitions occuring in Statement :  prime: prime(a) equipollent: B nat: set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x] nat: so_apply: x[s] implies:  Q int_upper: {i...} subtype_rel: A ⊆B ge: i ≥  prop: decidable: Dec(P) or: P ∨ Q nat_plus: + guard: {T} uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q sq_exists: x:{A| B[x]} cand: c∧ B cons: [a b] le: A ≤ B less_than': less_than'(a;b) sq_stable: SqStable(P) squash: T int_seg: {i..j-} lelt: i ≤ j < k divides: a mul-list: Π(ns)  reduce: reduce(f;k;as) list_ind: list_ind prime: prime(a) assoced: b
Lemmas referenced :  one_divs_any int_term_value_subtract_lemma int_term_value_mul_lemma itermSubtract_wf itermMultiply_wf decidable__equal_int int_upper_properties subtract_wf nat_plus_wf equal_wf subtype_rel_list mul-list_wf lelt_wf decidable__lt divides-fact sq_stable__le sq_stable_from_decidable false_wf int_upper_subtype_nat subtype_rel_set product_subtype_list and_wf int_formula_prop_eq_lemma intformeq_wf mul_list_nil_lemma list-cases int_upper_wf set_wf sq_stable__equal int_formula_prop_wf int_term_value_add_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma itermAdd_wf intformle_wf intformnot_wf itermVar_wf itermConstant_wf intformless_wf intformand_wf satisfiable-full-omega-tt less_than_wf nat_plus_properties le_wf decidable__le nat_properties fact_wf prime-factors decidable__prime nat_wf prime_wf equipollent-nat-decidable-subset
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin sqequalRule lambdaEquality isectElimination setElimination rename hypothesisEquality hypothesis independent_functionElimination lambdaFormation because_Cache dependent_set_memberEquality addEquality natural_numberEquality applyEquality unionElimination equalityTransitivity equalitySymmetry setEquality intEquality independent_isectElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll promote_hyp hypothesis_subsumption productElimination introduction imageMemberEquality baseClosed imageElimination multiplyEquality

Latex:
\mBbbN{}  \msim{}  \{p:\mBbbN{}|  prime(p)\} 



Date html generated: 2016_05_15-PM-05_28_44
Last ObjectModification: 2016_01_16-PM-00_31_20

Theory : general


Home Index